
Technische Universität München

Chair of Media Technology

Prof. Dr.-Ing. Eckehard Steinbach

Interdisciplinary Project

Parallel Mesh Simplification with Adaptive
Thresholding Based on Quadric Error Metrics

Author: Wojciech Zielonka
Matriculation Number: 03704591

Address: Am Schäferanger 15

85764 Oberschleißheim
Advisor: Prof. Dr.-Ing. Eckehard Steinbach
Begin: 01.04.2019

End: 01.12.2019

With my signature below, I assert that the work in this thesis has been composed by
myself independently and no source materials or aids other than those mentioned in
the thesis have been used.

München, December 20, 2019

Place, Date Signature

This work is licensed under the Creative Commons Attribution 3.0 Germany License.
To view a copy of the license, visit http://creativecommons.org/licenses/by/3.0/de

Or

Send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, Cali-
fornia 94105, USA.

München, December 20, 2019

Place, Date Signature

Abstract

This work elaborates a new parallel algorithm based on quadric error metric and adap-
tive thresholding to simplify a triangle mesh. The approach emphasizes planar surfaces
as a target to simplify. The main goal was to create a framework able to produce high
quality progressive meshes for browser streaming purposes.

i

Contents

Contents ii

1 Introduction 1

2 Basic Simplification Algorithm 2
2.1 Motivation . 2

2.2 Iterative Vertex Contraction . 3

2.3 Assessing Cost of Contraction . 4

2.4 Quadric Error Metric . 5

2.5 Vertex Placement . 10

2.6 Constraints . 12

2.7 Summary of Garland’s Algorithm . 16

3 Extended Simplification Algorithm 17
3.1 Design . 17

3.2 Results . 20

4 Parallel Simplification Algorithm 23
4.1 Producer Consumer Pattern . 23

4.2 Producer Design . 25

4.3 Consumer Design . 26

4.4 Design . 27

4.5 Results . 28

4.6 Taubin Smoothing . 30

4.7 Summary of the Algorithm . 32

4.8 Comparison to Commercially Available Products 33

5 Conclusions 40

A Examples of simplification 41

List of Figures 46

ii

CONTENTS iii

List of Tables 48

Bibliography 49

Chapter 1

Introduction

Mesh simplification is necessary when one wants to reduce the size of a mesh while still
preserving geometry. The technique is widely used in computer graphics to change
the model level of details [LRC+

03]. This project elaborates a specific case of mesh
simplification, where the focus is mostly on planar surfaces, like walls and floors, at the
same time, keeping high level of details for complex shapes; plants, elements on desks
in an office, etc. Mesh reconstruction in general introduces a problem of using the same
level of details for the whole 3D space. Most of planar surfaces can be described with
reduced amount of triangles. Therefore, after generating a reconstructed mesh from
real-world environments, mapped by static or mobile scanners, simplification can be
successfully applied with great results. In the next chapter, I will elaborate foundations
for the geometric error metric. Forwarded by the introduction to the extended version
of this algorithm, which additionally uses color and normals for the error metric. In
the fourth chapter, I will describe the parallel approach with adaptive thresholding to
solve the problem. Finally, in the last chapter, I will summarize and conclude the work.

Chapter 2

Basic Simplification Algorithm

In this section is presented a basic algorithm for mesh simplification. The algorithm is
founded on several components: iterative vertex contraction and quadric error metric.
This part elaborates basics of one of the most popular methods for mesh simplification
created by Michael Garland.

2.1 Motivation

The core of the algorithm is based on Michael Garland’s work Quadric-Based Polygo-
nal Surface Simplification [Gar99], where he suggests an algorithm capable of produc-
ing high-quality approximations of polygonal meshes. The main assumption is that
the approximation need not to maintain the topology of the original surface and is a
nicely balanced trade-off between quality and size.

The goal of this work was to adopt this algorithm to a parallel framework with adaptive
thresholding, capable of fast progresive mesh streaming [SY01] for renderer engines in
browsers. An example of such a renderer is IndoorViewer product created by NavVis.
Depending on selected mesh resolution and level of details an appropriate mesh will be
streamed to a browser. Therefore, the size and quality is crucial for the endpoint users
to get maximal usability. Using the assumption that planar surfaces need much less
triangles to describe geometry, while preserving details at non-planar surface. Light
and detailed meshes can be generated which are suitable for streaming purposes.

CHAPTER 2. BASIC SIMPLIFICATION ALGORITHM 3

2.2 Iterative Vertex Contraction

The simplification algorithm is based on several atomic operations. The most important
of them is an edge contraction. A pair of contraction is defined as (vi, vj) → v̄. The
atomic operation of a contraction is then defined as:

1. Move the vertices vi and vj to the position v̄

2. Replace all connections of vj with vi

3. Remove vj and all faces which belong both to vi and vj. In Figure 2.1 the gray
faces.

Figure 2.1: Contraction of an edge. Remove vj and move remaining edges to vi [Gar99].

The mentioned algorithm is a greedy procedure driven by the cost of contraction
[CLRS01]. It stops when the current threshold level is reached. To achieve simpli-
fication we apply a sequence of edge contraction. Where the sequence is created as
follows [GH97]:

1. Select a set of candidate vertex pairs.

2. Assign a cost of contraction to each candidate.

3. Place all candidates in a heap keyed on cost with the minimum cost pair at the
top.

4. Repeat until the desired approximation is reached:

(a) Remove the pair (vi, vj) of least cost from the heap.

(b) Contract this pair.

(c) Update costs of all candidate pairs involving vi.

Each edge is associated with a cost of contraction, which is basically the amount of er-
ror made during deletion of a given pair of vertices. This cost is a key in the minimum
heap [CLRS01] which is iteratively pop(). In each main iteration (steps from 1 to 4)
we contract edges up to the current adaptive threshold level. If a current edge’s cost is

CHAPTER 2. BASIC SIMPLIFICATION ALGORITHM 4

bigger or equal than the acceptable error, the main iteration procedure is stopped and
the remaining edges in the heap are ignored. In a next iteration, the heap is rebuilt
and the error level is slightly increased in such a way that previously contracted re-
gions are even more simplified. The error calculations are based on a hyper-parameters
aggressiveness and a current iteration value:

error(i) = 10−9 · (i + 3)a (2.2.1)

where i is the iteration and a is the aggressiveness.

The formula 2.2.1 is inspired by a Github implementation of Fast-Quadric-Mesh-
Simplification, where the author introduced adaptive thresholding using 2.2.1. The
aggressiveness has to be changed once the different attributes for the error metric are
used. The best results for geometry gives value a = 3 and for the rest of attributes
a = 5 is used.

Rebuilding heap captures the change of geometry made in a contraction for the whole
mesh. After one contraction we update only first order neighbors of a given vertex.
Therefore, we need to rebuild heap to reflect the global change.

2.3 Assessing Cost of Contraction

This section elaborates the way how to measure the cost of contraction for an edge. For
simplicity, the analysis is made just for geometry attributes. Maintaining high level of
details and faithful representation of the original mesh, the cost should be reflected
in the effect of changing geometry of the surface. Meaning, if the error is small, the
geometry changes insignificantly. An edge with a small error is a good candidate for
removal.

Because the metric is plane-based, the standard representation of a plane is defined as
nTv + d = 0 with normal n = [a b c]T, d is a scalar constant and v = [x y z]T is a point
in 3D space. From this, the quadric error metric can formulate as following [Gar99]:

D2(v) = (nTv + d)2 = (ax + by + cz + d)2 (2.3.1)

The error for the set of planes associated with the vertex v is then defined as (we have
to remember that this set is purely conceptual):

∑
i

D2
i (v) = ∑

i
(ni

Tv + di)
2 (2.3.2)

Each vertex has an accumulated error metric value for surrounding faces which repre-
sents the maximum squared distance to the intersection of all planes spanned by each
face.

CHAPTER 2. BASIC SIMPLIFICATION ALGORITHM 5

Figure 2.2 shows how removing a pair of contraction (vi, vj) could look in practice in
the 2D case. Vertices vi, vj define set of lines Pi = {A, C} and Pj = {B, C}. The error on
each of those vertices equals Eplane(vi) = Eplane(vj) = 0 since they both lie on the lines
span by thier sets. Let me define a new set which is a union of P̄ = Pi ∪ Pj = {A, B, C}.
Position of v̄ minimizes the sum of square distances the the lines in P̄ [Gar99].

Figure 2.2: Measuring contraction cost in 2D where v̄ is a global minimum of our opti-
mization objective. The dotted circles represent iso-lines of the funciton error [Gar99].

2.4 Quadric Error Metric

In this section the compact representation of the quadric error is introduced. First,
previously declared formula of quadric distance is expanded to: D2(v) 2.3.1.

D2(v) = (nTv + d)2 (2.4.1)

= (nTv + d)(nTv + d) (2.4.2)

= (vTnnTv + 2dnTv + d2) (2.4.3)

= (vT(nnT)v + 2(dn)Tv + d2) (2.4.4)

where nnT is the outer product of the face normal: a2 ab ac
ab b2 bc
ac bc c2

 (2.4.5)

Therefore, the quadric Q is defined as a triple:

Q = (A, b, c) (2.4.6)

CHAPTER 2. BASIC SIMPLIFICATION ALGORITHM 6

Where A is a 3x3 matrix, b is a 3-vector and c is a scalar. Therefore, the equation 2.4.4
is rewritten to:

Q(v) = vTAv + 2bTv + c (2.4.7)

Quadrics provide an intuitive addition operation which is component-wise: Qi(v) +
Qj(v) = (Qi + Qj)(v) where Qi(v) + Qj(v) = (Ai +Aj, bi + bj, ci + cj). Using this fact,
a single quadric EQ can easily be defined for the set of planes of a given vertex [Gar99]
as sum over quadrics for each face:

EQ(v) = ∑
i

D2
i (v) = ∑

i
Qi(v) = Q(v) (2.4.8)

In other words, each vertex contains accumulated information about the error for the
whole local neighborhood of v. For the pair of vertices the cost of contraction (vi, vj)→
v̄ is simply:

Q(v̄) = Qi(v̄) + Qj(v̄) (2.4.9)

The value of Q(v̄) is a key in the min-heap. Tables 2.3 and 2.4 show an example of
simplification using quadric metric. Due to complexity of the original Stanford Bunny
mesh which has 69451 faces, it was first simplified to 3642 faces and then used as a
reference model.

Number of faces Size in % of the original mesh
3642 faces 94.7%
2228 faces 96.8%
1842 faces 97.3%
1152 faces 98.3%
665 faces 99.0%
130 faces 99.8%

Table 2.1: Percentage of simplification of the original Stanford Bunny with 69351 faces.

Table 2.2 shows the quality of progressive simplification. 70% of reduction is hard to
distinguish from the original mesh, even the 95% is still a good approximation and
features of the bunny are preserved fairly well.

CHAPTER 2. BASIC SIMPLIFICATION ALGORITHM 7

(a) Faces 69451 (100%)

(b) Faces 18892 (30%)

(c) Faces 3642 (5%)

Table 2.2: Quality of the simplification of the original mesh.

CHAPTER 2. BASIC SIMPLIFICATION ALGORITHM 8

(a) Faces 3642 (b) Faces 2228

(c) Faces 1842 (d) Faces 1152

(e) Faces 655
(f) Faces 130

Table 2.3: Several approximations of Stanford Bunny constructed with the geometry
quadric error metric.

CHAPTER 2. BASIC SIMPLIFICATION ALGORITHM 9

(a) Faces 3642 (b) Faces 2228

(c) Faces 1842 (d) Faces 1152

(e) Faces 655 (f) Faces 130

Table 2.4: Wireframe versions of models in Table 2.3

CHAPTER 2. BASIC SIMPLIFICATION ALGORITHM 10

2.5 Vertex Placement

To perform the contraction of an edge (vi, vj) → v̄ the calculations of a new position
v̄, which is called the target, has to be done. The optimal placement strategy, therefore,
is to find a point for which Q(v̄) is minimal. Since, Q(v̄) is quadratic it is guaranteed
to find an unique minimizer which is a global minimum.

Q(v) = vTAv + 2bTv + c (2.5.1)
∇Q(v) = 2Av + 2b (2.5.2)

Solving for ∇Q(v) = 0, the optimal position is defined:

v̄ = −A−1b (2.5.3)

and the error:

Q(v̄) = bTv̄ + c = −bTA−1b + c (2.5.4)

The function used to calculate the optimal position v̄ is the following:

1 virtual bool optimize(Eigen:: VectorXd &result) {

2 Eigen::FullPivLU <Eigen ::MatrixXd > lu = A.fullPivLu ();

3 if (!lu.isInvertible ())

4 return false;

5 result = -lu.solve(b);

6 return true;

7 };

Listing 2.1: LU decomposition for solving a linear system.

Eigen::FullPivLU is LU decomposition of a matrix with complete pivoting, and related
features. This decomposition provides the generic approach to solving systems of
linear equations, computing the rank, invertibility, inverse, kernel, and determinant
[Eig19].

The standard routine is based on 3 basics checks [Gar99]:

1. Try to compute v̄ (2.5.3)

2. If A is singular, find the optimal position along the line segment (vi, vj), by
checking 3 points for the minimum error [vi, vj, (vj − vi)/2].

3. If this is not unique, select the better of vi and vj.

In practice it is very rare that a matrix determinant is zero. Due to the limits of floating
point precision. However, the function isInvertible() determines which pivots should
be considerd nonzero, based on a certain threshold defined in the Eigen::FullPivLU

CHAPTER 2. BASIC SIMPLIFICATION ALGORITHM 11

implementation. A matrix with determinant close to zero will be considered as not
a full-rank matrix [Str88]. Consequently, step 2 or 3 has to be performed to find the
optimal point.

The optimal vertex placement will tend to create closely fitting approximations of the
original mesh. Therefore, the resulting meshes are shaped in a way that triangles are
more equilateral and their areas are more uniform. This method is the best choice for
generating fixed approximations of an original [Gar99].

Summarizing, the general placement strategy for the pair of contraction (vi, vj) is to
always move vi to v̄ and then vj to the position of vi. It eliminates a problem of storing
delta of the new vertex position.

CHAPTER 2. BASIC SIMPLIFICATION ALGORITHM 12

2.6 Constraints

Simplification requires several different constrains and checks to not introduce a topol-
ogy error in the new vertex placement position. The quality of approximation is critical
for producing simplified meshes. For instance, the borders of a mesh have to be treated
as a special case.

There are a few options the problem of borders can solve. This implementation uses
a version with adding the quadric error of a plane perpendicular to a given border
edge. The perpendicular plane itself defines a boundary constraint. The other option
is to not touch border vertices. However, this option is problematic if a certain level of
simplification has to be achieved. The number of border vertices can be even 15% of
the mesh. It means that this 15% has to be transfered from the complex shapes which
we would like to preserve to the simplification pool. Therefore, the quality of the mesh
is sacrificed for the sake of preserving edges.

Figure 2.3: An example of the border constrain [Gar99].

The perpendicular plane constraint is very convenient in many aspects. For instance,
it requires only to calculate the quadric error and add this error to the initial quadric
error of each vertex on the boundary. It can be done in the initialization step when
the heap is built. After each main iteration, the vertices are flagged if they lay on
the border. Once the perpendicular error planes are accumulated in the vertices the
algorithm continues the regular routine.

The perpendicular plane constraint can be additionally weighted by an arbitrary con-
stant factor. This implementation do not use the factor multiplication because of the
adaptive thresholding, which ignores all edges above the current threshold level. In
this version of the algorithm, the edges are consumed as soon as possible to reduce the
simplification pool.

CHAPTER 2. BASIC SIMPLIFICATION ALGORITHM 13

The other very important problem is vertex folding. A vertex placement can introduce
a new position for a vertex which folds the neighborhood and produces degeneracies
into the mesh.

Figure 2.4: An edge contraction which causes the mesh to fold over on itself [Gar99].

Before performing a contraction, the algorithm has to check, if the new position is a
valid one. For example, Figure 2.4 shows the degenerated new position of v̄ which
folds one of the faces into the darkened area. In this case, the contraction is stopped
for this particular edge. To detect those kind of situations, the normals of faces around
vi, vj are examined. If the face normal changes by some threshold level, the contraction
is assumed to introduced flipping and is discarded.

To determine if a flipping occurred, two checks are preformed. First, checking if the
area of newly created face is sufficient. Meaning, investigate the angle between edges.
If it is bigger than some threshold, edges are almost co-linear. If a triangle is defined
as T = (p, q, r) then:

Figure 2.5: Triangle T = (p, q, r).

CHAPTER 2. BASIC SIMPLIFICATION ALGORITHM 14

u =
r− v̄
‖r− v̄‖ (2.6.1)

v =
q− v̄
‖q− v̄‖ (2.6.2)

t = |u · v| (2.6.3)

where u and v are unit vectors and v̄ is the new optimal position. Variable t caries
the notion of angle between two vectors, if t is bigger than 0.999 the flipping was
introduced and two new edges are very close to be co-linear.

Figure 2.6: A new triangle T = (q, r, v̄) where t is the angle used to check the co-
linearity constraint.

CHAPTER 2. BASIC SIMPLIFICATION ALGORITHM 15

The second check investigates normals Figure 2.3. Using previously defined vectors u
and v and triangle T with its normal as nT the definition is as follows:

n =
u× v
‖u× v‖ (2.6.4)

c = n · nT (2.6.5)

If c is smaller than 0.2 the contraction is rejected. Basically, it means that the new face
is going to flip and is close to be perpendicular to the neighboring face. In many cases
it introduces inconsistencies. In this situation the removal is also rejected.

To correctly investigate flipping, the whole silhouette of neighbors of a given new
vertex position has to be checked. The test check has to pass for all of them to accept
a decimation.

CHAPTER 2. BASIC SIMPLIFICATION ALGORITHM 16

2.7 Summary of Garland’s Algorithm

Below, the complete algorithm in 5 steps is presented. The next chapter elaborates how
this concept is incorporated in multi-threaded approach.

Algorithm [Gar99]:

1. Select a set of candidate vertex pairs (vi, vj).

2. Allocate a quadric Qi for each vertex vi.

3. For each face compute a quadric Qi. Add this fundamental quadric to the vertex
quadrics Qi, Qk, Ql and optionally weight it appropriately.

4. For each candidate pair (vi, vj):

(a) Compute Q = Qi + Qj.

(b) Select a target position v̄.

(c) Apply consistency checks and penalties.

(d) Place pair in heap keys on cost Q(v̄)

5. Repeat until the desired approximation is reached:

(a) Remove the pair (vi, vj) of least cost from the heap.

(b) Preform contraction (vi, vj)→ v̄

(c) Set Qi = Qi + Qj.

(d) For each remaining pair (vi, vj), compute target position and cost as in step
4; update heap.

The algorithm above is the main core of the implementation. Every thread will perform
the simplification using quadric error metrics, based on Garland’s work. In the next
chapter, a brief introduction to the extended version of the algorithm which includes
color and normals is given.

Chapter 3

Extended Simplification Algorithm

The previous implementation includes only geometric error. In this chapter more at-
tributes to improve simplification are incorporated. Using additionally color and nor-
mals, the decimation of planar surfaces can be easier achieved and gives better results.
However, in the noisy environment of color (which is usually the case in scans), gradi-
ent guided simplification may affect the results.

3.1 Design

In this section, the main assumption is that each vertex is additionally associated with
color c = [r g b]T and normal n = [nx ny nz]T. For the sake of simplicity, lets consider
an example with geometry and color only. Assume that each vertex is attributed with
v = [x y z r g b]T. Figure 3.1 shows an example of a mesh like that. A triangle is defined
as T = (p, q, r) with edges h = q− p and k = r− p. Since the input vector for the
optimization are more then 3 dimensional, a different method to calucalte orthogonal
vectors to the plane defined by the face is used. Simply calculating a cross product
of two vectors will not work. Gram-Schmidt vectors orthogonalization method solves
this problem [Str88].

17

CHAPTER 3. EXTENDED SIMPLIFICATION ALGORITHM 18

Figure 3.1: A triangulated hexagon with color values at each vertex [Gar99].

Therefore, two orthogonal to each other vectors e1, e2 are defined as:

e1 = h/‖h‖ (3.1.1)

e2 =
k− (e1 · k)e1∥∥k− (e1 · k)e1

∥∥ (3.1.2)

e1, e2 are unit-length vectors which form a local coordinate system with p as the origin.
Those vectors describe a plane like object in R6.

Figure 3.2: Orthonomal vectors [Gar99].

CHAPTER 3. EXTENDED SIMPLIFICATION ALGORITHM 19

Now, the distance from an arbitrary point v ∈ Rn to the plane created by the face T
will be presented. The squared distance of the vector u = p− v is defined as [Gar99]:

‖u‖2 = uTu = (uTe1)
2 + ... + (uTen)

2 (3.1.3)

Rearranging the equation gives:

(uTe3)
2 + ... + (uTen)

2 =‖u‖2 − (uTe1)
2 − (uTe2)

2 (3.1.4)

The left hand side is the squared distance of u along all the axes perpendicular to the
plane of T. This is the distance between this vector v and the plane T.

D2 = uTu− (uTe1)(uTe1)− (uTe2)(uTe2) (3.1.5)

The quadric metric is defined as Q(v) = vTAv + 2bTv + c where:

A = I− e1e1
T − e2e2

T (3.1.6)
b = (p · e1)e1 + (p · e2)e2 − p (3.1.7)

c = p · p− (p · e1)
2 − (p · e2)

2 (3.1.8)

For more details please refer to Michael Garland’s Quadric-Based Polygonal Surface
Simplification.

The matrix A from 3.1 is then:



0.06 0 0 0 −0.59 0
0 0.23 0 1.15 0 0
0 0 6.00 0 0 0
0 1.15 0 5.77 0 0

−0.59 0 0 0 5.94 0
0 0 0 0 0 6.00


(3.1.9)

Building the quadric and finding the optimal position is exactly the same like in the
geometry case. To use a different metric, a proper orthonormal vectors in Rn have to
be provided.

CHAPTER 3. EXTENDED SIMPLIFICATION ALGORITHM 20

Figure 3.3: Summary of common extended quadric types [Gar99].

3.2 Results

As it can be seen in the Table 3.1, complex shapes like plants or a small fan in front
of the monitor preserve their initial complexity. However, flat surfaces like the desk
or the monitor are significantly simplified. Therefore, the amount of removable faces,
to achieve a particular simplification level, was transfered from the complex shapes
pool to the flat surface pool. Complex shapes will be simplified only in the case when
planar surfaces are as simply as possible and removal is not longer available.

Table 3.2 shows the results of using color and geometry metric error. It can be easily no-
ticed that the simplification follows the color pattern. In some cases it is a desired fea-
tures, however, since the color distribution on planar surfaces is typically non-uniform,
the resulting color gradients might have undesired impact on the final simplification
result.

If the color gradient was constant in most of the places, the whole simplification would
hugely benefit from it. However, not only a camera introduces an error, in the case of
3D datasets captured by mobile lasers scanners like the NavVis M6, error sources as
calibration and SLAM need to be considered when choosing the right attributes for the
simplification. Therefore, either normals, color, geometry are incorporated all together
or used separately.

CHAPTER 3. EXTENDED SIMPLIFICATION ALGORITHM 21

(a) Original

(b) Color, geometry and normal simplification

Table 3.1: Comparison of simplification with all attributes [geometry, color, normal]
with 87% of reduction to the original mesh.

CHAPTER 3. EXTENDED SIMPLIFICATION ALGORITHM 22

(a) Original. (b) Color and geometry simplification.

(c) Original. (d) Color and geometry simplification.

(e) Original. (f) Color and geometry simplification.

(g) Original floor with color noise. (h) Gradient guided simplification error.

Table 3.2: Comparison of gradient guided simplification [geometry, color].

Chapter 4

Parallel Simplification Algorithm

This chapter introduces the approach to design a parallel version of Garland’s sim-
plification algorithm. First, the Producer-Consumer design pattern with libraries and
the implementation ideas making it thread-safe are described. Next, the analysis of
the speedup and potential problems which can arose during an execution are shown.
Finally, summary of the approach and comparison to different algorithms is given.

4.1 Producer Consumer Pattern

The producer-consumer pattern is an optimal way to distribute workload of processing
data to worker threads which process the data. In other words, it divides the problem
into two major components, connected usually by a queue. This is a classic example
of a multi-process synchronization problem. The process separation gives clear view
at the problem and tasks. A producer is placing items in a queue, and a consumer
removes each task from the queue and processes the data. This decoupling means that
two components are completely independent [Gra02]. In the case when the queue is
full, locking procedure is used to wait for consumers to process tasks.

23

CHAPTER 4. PARALLEL SIMPLIFICATION ALGORITHM 24

Figure 4.1: UML sequence diagram for the procuder-consumer pattern implementation
[RT17].

Figure 4.1 shows how such a process could look like. Three main components are
shown; producer, synchronization object (the queue) and consumer. In the case when
the buffer is either full or empty, waiting spin1 is used to hold execution till the moment
when more tasks are available for a consumer.

In this implementation a generalized version of the pattern is used, which assumes
multiple producers and consumers operating on a single fixed buffer. The main idea is
to create separate tasks, which later are consumed by active threads from the thread-
pool2. To create those tasks, clustering of the mesh is introduced.

1A procedure to constantly check if the queue has new tasks to process. This is a common technique
used in parallel programming.

2A thread pool is a group of pre-instantiated, idle threads which stand ready to be given work, in
this case simplification tasks from the queue.

CHAPTER 4. PARALLEL SIMPLIFICATION ALGORITHM 25

4.2 Producer Design

To cluster a mesh into sub-boxes, a simple method of dividing the global bounding
box is used. When the mesh is read, the global bounding box is calculated, which later
is divided into predefined number of clusters.

Figure 4.2: Example of clustring a mesh into 7x7x7 clusters.

Figure 4.2 shows an example with arbitrary 7x7x7 = 343 clusters, where each
dimension of the main bounding box [B] was divided into 7 equal parts [C]. When
clustered boxes are calculated, the membership check to which cluster a face belongs
is performed. In the case when a face intersects multiple clusters a voting procedure
is done, which is defined as follows; if two vertices of a face belong to the same cluster
this cluster is selected as a holder of the face. If each vertex belongs to a different
cluster then one box is randomly selected. The pseudocode of the producer is the
following:

1 void function produce {

2 clusters = getClusters(size , mesh);

3 for (cluster : clusters){

4 set faceCluster to empty

5 for (face : cluster.elements){

6 if vote(face) is true

7 add face to faceCluster

8 }

9 add faceCluster to queue

10 }

11 };

Listing 4.1: C style psuedocode of a producer.

In the line 6 the vote() function is used to assign the correct cluster id and membership
of a face. The line 9 inserts the f aceCluster to the queue for further processing.

CHAPTER 4. PARALLEL SIMPLIFICATION ALGORITHM 26

4.3 Consumer Design

The consumer process is designed in a way to utilize funcionality of
boost::thread_group and boost::asio::io_service . The thread group is a class

which helps with thread management and provides a container for easy grouping of
threads to simplify several common thread creation and management idioms [WE19].
A user has to specify how many threads will be created and added to the thread-pool.
Those threads operate directly on the queue, removing tasks and processing data.
In this case they are preforming simplification of a mesh on each cluster independently.

1 void function task {

2 garland = QSlim ();

3 garland ->setClustersAABBs ();

4 garland ->initialize <QuadricError >();

5 garland ->simplify <QuadricError >();

6 };

Listing 4.2: C style psuedocode of a task for a consumer.

Each task gets a single cluster to process. The QuadricError is a type of a quadric error
metric which specifies attributes for the calculations like; geometry, color, normals. The
class QSlim is responsible for all simplification operations and was elaborated in the
previous sections.

All decimating operations executed by threads are independent, except those on the
borders. If one vertex of a face belongs to a different cluster and this cluster is processed
by a different thread, a clever locking strategy has to be used. The main idea is to
lock3 the whole neighborhood of an edge. To avoid deadlocks, a Boost specialized
version of boost::recursive_mutex is used. It allows to be locked multiple times
by the same thread. In the border situation, the best solution for obtaining a lock is
to use the method bool try_lock() which returns immediately false if the mutex is
already locked by a different thread. It means that the given neighborhood is already
processing by a different thread and the simplification process for the current thread
is terminated because the edge is deleted by a different process.

boost::asio::io_service is responsible for the whole producer consumer work-flow
and is the centerpiece in this implementation. The service nicely utilizes functionality
of a thread-pool. The method post() creates tasks and pushes them to the queue where
later they are processed by threads from the thread-pool.

3Locking is a synchronization mechanism for enforcing limits on access to a resource in an environ-
ment where there are many threads of execution.

CHAPTER 4. PARALLEL SIMPLIFICATION ALGORITHM 27

4.4 Design

The algorithm is based on Garland’s simplification quadric error metric algorithm. The
main difference is clustering and parallel consuming parts of a mesh with adaptive
thresholding for each iteration. This approach guarantees global update and accumu-
lation of quadrics for each iteration in such a way that planar surfaces are always deci-
mated first. The main goal of this work, is to transfer from a global pool of vertices for
a mesh to two separate pools, one for complex shapes and one for planar surfaces. Ver-
tex pools are just conceptual terms which mean the number of vertices which we want
to remove to achieve our convergence criteria. However, to retain complex shapes in-
tact, vertices from planar surfaces have to be removed as much as possible to maintain
a given trade-off in pools. Therefore, the outer loop of the algorithm, which increases
the threshold level, is crucial. The reconstruction always creates a mesh with evenly
distributed triangles. This assumption drives the design of the algorithm. Complex
shapes have high quadric error. An appropriately manipulated threshold can achieve
the desired transfer goal.

To improve time of the simplification convergence, aggressiveness can be increased.
The only problem is the final quality of the approximation. The iterative nature of
using Garland’s algorithm and adaptive thresholding, which targets only planar sur-
face, does not always hold in this case. However, it allows to save around 50% time of
processing by slightly increasing aggressiveness.

CHAPTER 4. PARALLEL SIMPLIFICATION ALGORITHM 28

4.5 Results

This section elaborates results of multi-threaded experiments of the algorithm. Addi-
tionally, the time investigation of each execution in multiple scenarios is shown. The
tests were performed on a machine with 32 GB of RAM and Intel i7-6700 CPU 3.40GHz
with 4 physical cores on a mesh with 982624 faces and 517715 vertices. Six different
setups were ran with the objective to achieve a reduction level of 85% of the original
mesh:

Number of clusters Number of threads in the pool Total time processing
1 1 127.62s
8 2 77.98s
8 4 56.77s
8 8 62.01s

27 8 48.88s
27 27 48.02s

Table 4.1: 4 different test setups.

Figure 4.3: Time of execution in seconds with different number of threads and clusters.

The Figure 4.3 shows how much time does it take to simplify a mesh in one iteration.

CHAPTER 4. PARALLEL SIMPLIFICATION ALGORITHM 29

In total, there were 19 iterations to achieve the 85% of simplification. One iteration in
this case, is the full pass of the simplification algorithm. It means; to wait for all active
threads to finish processing the sub-meshes. Naturally, the time is getting smaller with
each iteration because of less vertices to process. As it is expected, the single threaded
version performs very poorly. Using more than 1 thread can achieve better results with
the best speedup of around 3.5.

Figure 4.4: The best speedup for each iteration

The Figure 4.4 desciribes the best speedup for each iteration. The value oscillates
around 2.5 and 3 which is a decent result for this complex algorithm. Moreover, in the
Figure 4.3 the Amdahl’s law is visible in practice. Incerasing number of threads does
not improve speedup [Amd67].

To avoid synchronization overhead deep copying of a sub-meshes was tried. Those
deeply copied sub-meshes were passed to the processing threads. The problem with
this solution is merging sub-meshes into the master mesh after simplification. To pre-
serve local geometry on the edges, the process of decimation need not to change or
remove them, which gives a rise to the problem with convergence. Moreover, merging
meshes takes time and the algorithm does not gain much performance speedup using
this strategy.

Summarizing, the parallel execution of clusters gives a desired speedup. The algorithm
is able to process big meshes up to a few million of faces in reasonable time, which is
necessary for streaming purposes and production usage.

CHAPTER 4. PARALLEL SIMPLIFICATION ALGORITHM 30

4.6 Taubin Smoothing

During the research and later implementation of the algorithm, faster convergance to
selected level of reduction was noticed when the input mesh was smoothed in a pre-
processing step. For purposes of this work, Taubin Smoothing algorithm was used.
The method is a linear low-pass filter that removes high curvature variations and does
not produce shrinkage [Tau95].

(a) Simplification with smoothing

(b) Simplification without smoothing

Table 4.2: Comparision of the smoothing effect for 85% simplification.

CHAPTER 4. PARALLEL SIMPLIFICATION ALGORITHM 31

Iterations Lambda Mu
7 0.5 -0.67

Table 4.3: Taubin algorithm parameters.

The simplification was ran on the mesh with 396277 faces and 208825 vertices. The
mesh was reduced to 50009 faces and 29347 vertices. In Table 4.4 it can be seen that
the speedup compared with the single core is around 1.6. Additionally, in the Table 4.2
shows that planar surfaces look better after simplification with smoothing.

Time with smoothing Time without smoothing
27.73 s 43.06 s

Table 4.4: Taubin algorithm parameters.

Figure 4.5: Convergance to 15% of the original mesh.

Figure 4.5 shows comparison of the algorithm execution with and without smoothing.
In the case with smoothing, the convergance takes only 19 full iterations, whereas, for
a regular version it takes 28. It means that with a small overhead, the complexity of
Taubin’s algorithm is linear O(n) in the number of vertices [Tau95], a better quality of
the simplified mesh and additional speedup can be obtained.

CHAPTER 4. PARALLEL SIMPLIFICATION ALGORITHM 32

4.7 Summary of the Algorithm

1. Smooth mesh using Taubin’s algorithm (optional).

2. Cluster the mesh:

(a) Split the mesh according to number of selected clusters; for example
2x2x2=8.

(b) Add a task for each cluster to the queue.

3. Wait for all threads from the thread-pool to finish processing simplification algo-
rithm [QSlim] ran on all clusters. Each thread does:

(a) Build the heap with edges.

(b) Decimate edges till reaching the threshold level.

4. Update the mesh structure:

(a) Remove faces flagged as invalid4.

(b) Reset properties for each remaining face and vertex.

5. Repeat from the second step till convergence.

As it is shown above, the parallel algorithm nicely wraps Garland’s algorithm in the
third step. Procedure from the second step is repeated till either reduction level is
reached, or the number of iterations is exceeded. To achieve a simplification focused
on planar surfaces the adaptive threshold level is used. The third step is terminated
for a given thread if the cost level is higher than the threshold.

4Removed faces and vertices are flagged as invalid due to the parallel nature of the algorithm and
not thread-safe graph structure used in the implementation. Once the parallel processing is done, faces
and vertices can be safely deleted from the graph.

CHAPTER 4. PARALLEL SIMPLIFICATION ALGORITHM 33

4.8 Comparison to Commercially Available Products

Most of commercially available algorithms use only geometry to generate an approxi-
mation of a mesh. Libraries like OpenMesh do not provide an API to use all attributes
of a vertex. Moreover, increasing the number of constraints does not help. The prob-
lem is not solved jointly like in the case of this work. Additionally, those algorithms
simplify a mesh globally, which introduces almost even decimation for all surfaces.
Below is shown a comparison between this method and several different approaches
available commercially. The benchmark was to reduce the original mesh by 85%.

Figure 4.6: The original mesh.

Figure 4.6 shows the original mesh with evenly distributed faces. The amount of faces
used for the wall is unnecessary. Therefore, a successful simplification can be applied
to this surface.

CHAPTER 4. PARALLEL SIMPLIFICATION ALGORITHM 34

Figure 4.7: Fast-Quadric-Mesh-Simplification algorithm.

Figure 4.7 shows Fast-Quadric-Mesh-Simplification algorithm by Sven Forstmann,
which is a Github implementation of memory efficient and very fast edge collapse
mesh simplification method. According to the creator it is around 4 times faster than
the Meshlab version. Figure 4.7 shows the result where it can be seen that all surfaces
are decimated evenly. Moreover, the algorithm is based only on vertex iteration with
adaptive thresholding without building a heap of edges.

https://github.com/sp4cerat/Fast-Quadric-Mesh-Simplification

CHAPTER 4. PARALLEL SIMPLIFICATION ALGORITHM 35

Figure 4.8: OpenMesh with geometry and normals.

Figure 4.8 shows the usage of OpenMesh library, where the decimation was done
using geometry and normals. Because of that, border edges were not touched. In
this case, borders can produce topology errors in the approximation, like spiky edges.
Border preserving is mostly visible on the plant structure or the monitors edges. This
method gives the poorest result, however, it is almost as fast as Fast-Quadric-Mesh-
Simplification.

CHAPTER 4. PARALLEL SIMPLIFICATION ALGORITHM 36

Figure 4.9: MeshLab version of simplification.

As it can be seen in Figure 4.9 the approximation is very similar to Figure 4.7. However,
the MeshLab version is slower than Fast-Quadric-Mesh-Simplification algorithm.

CHAPTER 4. PARALLEL SIMPLIFICATION ALGORITHM 37

Figure 4.10: Parallel QSlim with adaptive thresholding algorithm using only geometry.

Figure 4.10 shows approximation produced by the version of the algorithm elaborated
in chapter 4. The complex shapes are preserved much better than in all previous
versions. However, there is still room for even more aggressive decimation of planar
surfaces. To achieve it, we need to use more attributes in our joint optimization.

CHAPTER 4. PARALLEL SIMPLIFICATION ALGORITHM 38

Figure 4.11: Parallel QSlim with adaptive thresholding algorithm using geometry, color
and normals.

Figure 4.11 shows the best approximation under the constrain of decimating most of
the planar surface. All complex shapes are almost completely preserved from the
original mesh. The faces which describe the wall are as big as possible. Moreover,
iterative nature of the algorithm, allows to level small surface elevation changes. For
instance, the interior part of the pouf near the wall. In Figure 4.10 it can be seen that
the noise and level changes, meaning high quadric error, prevents this region from
being simplified. In the version with all attributes [geometry, normal, color], the interior
part is nicely leveled.

CHAPTER 4. PARALLEL SIMPLIFICATION ALGORITHM 39

Figure 4.12: RapidCompact version of simplification.

For completeness, a commercial version of simplification algorithm was used. The
algorithm was provided by the company RapidCompact. Figure 4.12 shows that the
result is almost exactly the same, like in the case of the MeshLab and Fast-Quadric-
Mesh-Simplification algorithm.

Chapter 5

Conclusions

The goal of this work was to create a parallel algorithm which should simplify planar
surfaces and at the same time preserve high level of details in areas with complex
geometry. The results show that the goal was achieved. Complex shapes are almost
entirely preserved, whereas, planar surfaces are described using few faces. Appendix
A shows the results where the best approximation is generated using quadric error
metric with all vertex’s attributes. However, at the same time, this metric is the slowest
one because of the number of parameters to jointly optimize for every edge.

Summarizing, the algorithm is able to generate high quality progressive meshes in
reasonable time, which was one of the most important aspects of this work. The results
are promising and in some cases are better than commercially available products. The
time of processing is the biggest flaw of the approach. This problem can be reduced by
increasing aggressiveness, however, the quality and our assumptions will suffer from it.
Despite the fact that parallelization gives in the first iteration almost 4 times speedup,
all approximations have to be generated beforehand for the streaming purposes.

Appendix A

Examples of simplification

The examples below present the simplification of a mesh generated from a dense point
cloud scanned in the NavVis office. The mesh has 507277 vertices and 973168 faces.

APPENDIX A. EXAMPLES OF SIMPLIFICATION 42

Fi
gu

re
A

.1
:O

ri
gi

na
lm

es
h

w
it

h
ev

en
ly

di
st

ri
bu

te
d

tr
ia

ng
le

s.

APPENDIX A. EXAMPLES OF SIMPLIFICATION 43

Fi
gu

re
A

.2
:S

im
pl

ifi
ed

m
es

h
to

1
5
%

of
th

e
or

ig
in

al
us

in
g

[g
eo

m
et

ry
]

APPENDIX A. EXAMPLES OF SIMPLIFICATION 44

Fi
gu

re
A

.3
:S

im
pl

ifi
ed

m
es

h
to

1
5
%

of
th

e
or

ig
in

al
us

in
g

[g
eo

m
et

ry
,c

ol
or

]

APPENDIX A. EXAMPLES OF SIMPLIFICATION 45

Fi
gu

re
A

.4
:S

im
pl

ifi
ed

m
es

h
to

1
5
%

of
th

e
or

ig
in

al
us

in
g

[g
eo

m
et

ry
,c

ol
or

,n
or

m
al

]

List of Figures

2.1 Contraction of an edge. Remove vj and move remaining edges to vi
[Gar99]. 3

2.2 Measuring contraction cost in 2D where v̄ is a global minimum of our
optimization objective. The dotted circles represent iso-lines of the funci-
ton error [Gar99]. 5

2.3 An example of the border constrain [Gar99]. 12

2.4 An edge contraction which causes the mesh to fold over on itself [Gar99]. 13

2.5 Triangle T = (p, q, r). 13

2.6 A new triangle T = (q, r, v̄) where t is the angle used to check the co-
linearity constraint. 14

3.1 A triangulated hexagon with color values at each vertex [Gar99]. 18

3.2 Orthonomal vectors [Gar99]. 18

3.3 Summary of common extended quadric types [Gar99]. 20

4.1 UML sequence diagram for the procuder-consumer pattern implemen-
tation [RT17]. 24

4.2 Example of clustring a mesh into 7x7x7 clusters. 25

4.3 Time of execution in seconds with different number of threads and clusters. 28

4.4 The best speedup for each iteration . 29

4.5 Convergance to 15% of the original mesh. 31

4.6 The original mesh. 33

4.7 Fast-Quadric-Mesh-Simplification algorithm. 34

4.8 OpenMesh with geometry and normals. 35

4.9 MeshLab version of simplification. 36

4.10 Parallel QSlim with adaptive thresholding algorithm using only geometry. 37

4.11 Parallel QSlim with adaptive thresholding algorithm using geometry,
color and normals. 38

4.12 RapidCompact version of simplification. 39

A.1 Original mesh with evenly distributed triangles. 42

A.2 Simplified mesh to 15% of the original using [geometry] 43

A.3 Simplified mesh to 15% of the original using [geometry, color] 44

46

LIST OF FIGURES 47

A.4 Simplified mesh to 15% of the original using [geometry, color, normal] . . 45

List of Tables

2.1 Percentage of simplification of the original Stanford Bunny with 69351

faces. 6

2.2 Quality of the simplification of the original mesh. 7

2.3 Several approximations of Stanford Bunny constructed with the geome-
try quadric error metric. 8

2.4 Wireframe versions of models in Table 2.3 9

3.1 Comparison of simplification with all attributes [geometry, color, nor-
mal] with 87% of reduction to the original mesh. 21

3.2 Comparison of gradient guided simplification [geometry, color]. 22

4.1 4 different test setups. 28

4.2 Comparision of the smoothing effect for 85% simplification. 30

4.3 Taubin algorithm parameters. 31

4.4 Taubin algorithm parameters. 31

48

Bibliography

[Amd67] Gene M. Amdahl. Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities. ACM, 1967.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. The MIT Press, 2001.

[Eig19] Eigen. https://eigen.tuxfamily.org/doxclassEigen_1_1FullPivLU.

html, 2019. [Online; accessed 23-Oct-2019].

[Gar99] Michael Garland. Quadric-Based Polygonal Surface Simplification. School of
Computer Science Carnegie Mellon University, 1999.

[GH97] Michael Garland and Paul S. Heckbert. Surface Simplification Using Quadric
Error Metrics. ACM Press/Addison-Wesley Publishing Co., 1997.

[Gra02] Mark Grand. Patterns in Java, Volume 1, A Catalog of Reusable Design Patterns
Illustrated with UML. Wiley, Second edition, 2002.

[LRC+
03] David Luebke, Martin Reddy, Jonathan D. Cohen, Amitabh Varshney, Ben-

jamin Watson, and Robert Huebner. Level of Detail for 3D Graphics. Morgan
Kaufmann Publishers Inc., 2003.

[RT17] Juan Ropero and Gabriel Tamura. Characterizing the Impact of Context-
Variables in Software Performance Factors: a Domain-Specific Design Patterns
Perspective. 2017.

[Str88] Gilbert Strang. Linear Algebra and its Applications. Harcourt Brace Jovanovich,
San Diego, Third edition, 1988.

[SY01] C. C Jay Kuo Sheng Yang, Chang-Su Kim. View-dependent progressive mesh
coding for graphic streaming. Multimedia Systems and Applications IV, 2001.

[Tau95] G. Taubin. Curve and Surface Smoothing Without Shrinkage. IEEE Computer
Society, 1995.

[WE19] Kempf William E. https://www.boost.org/doc/libs/1_33_1/doc/html/

thread_group.html, 2019. [Online; accessed 29-Oct-2019].

49

https://eigen.tuxfamily.org/dox classEigen_1_1FullPivLU.html
https://eigen.tuxfamily.org/dox classEigen_1_1FullPivLU.html
https://www.boost.org/doc/libs/1_33_1/doc/html/thread_group.html
https://www.boost.org/doc/libs/1_33_1/doc/html/thread_group.html

	Contents
	Introduction
	Basic Simplification Algorithm
	Motivation
	Iterative Vertex Contraction
	Assessing Cost of Contraction
	Quadric Error Metric
	Vertex Placement
	Constraints
	Summary of Garland's Algorithm

	Extended Simplification Algorithm
	Design
	Results

	Parallel Simplification Algorithm
	Producer Consumer Pattern
	Producer Design
	Consumer Design
	Design
	Results
	Taubin Smoothing
	Summary of the Algorithm
	Comparison to Commercially Available Products

	Conclusions
	Examples of simplification
	List of Figures
	List of Tables
	Bibliography

