
M U LT I - M O D A L C A P T U R I N G
A N D S Y N T H E S I S O F D I G I TA L

H U M A N S

A dissertation submitted to
T E C H N I S C H E U N I V E R S I TÄT D A R M S TA D T

Fachbereich Informatik

in fulfillment of the requirements for the degree of
Doktor-Ingenieur (Dr.-Ing.)

presented by
W O J C I E C H Z I E L O N K A

M.Sc.

Examiner: Prof. Justus Thies, Ph.D.
Co-examiner: Prof. Matthias Nießner, Ph.D.

Date of Submission: June 27
th, 2025

Date of Defense: August 12
th, 2025

Darmstadt, 2025



ii



Multi-modal Capturing and Synthesis of Digital Humans
Creation of Digital Humans

Submitted doctoral thesis by Wojciech Zielonka

Examiner: Prof. Justus Thies, Ph.D.
Co-examiner: Prof. Matthias Nießner, Ph.D.

Date of Submission: June 27
th, 2025

Date of Defense: August 12
th, 2025

Darmstadt, Technische Universität Darmstadt
Jahr der Veröffentlichung der Dissertation auf TUprints: 2025

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-xxxxx
URL: https://tuprints.ulb.tu-darmstadt.de/xxxxx

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de

tuprints@ulb.tu-darmstadt.de

© 2025 Wojciech Zielonka.
This item is protected by copyright and/or related rights. You are free
to use this work in any way that is permitted by the copyright and
related rights legislation that applies to your use. For other uses, you
need to obtain permission from the rights-holder(s).
More information about this copyright statement is available at
http://rightsstatements.org/vocab/InC/1.0/.

https://tuprints.ulb.tu-darmstadt.de/xxxxx
http://tuprints.ulb.tu-darmstadt.de
http://rightsstatements.org/vocab/InC/1.0/




To my family, who have always believed in me, even when I doubted myself.
To my friends, whose support and humor carried me through the hardest
moments. And to my girlfriend, whose love, patience, and understanding
have meant everything — this journey would not have been the same without
you.





A B S T R A C T

Multi-modal capture and synthesis of digital humans represent a
complex and multifaceted challenge. Achieving realistic digital twins
requires addressing a wide range of intricate details. Moreover, hu-
mans are highly sensitive to visual artifacts; even minor inconsistencies
in facial reconstruction or garment simulation can significantly impair
perceived realism. Nevertheless, these virtual doppelgängers play a
critical role in applications such as virtual and mixed reality, con-
versational AI, and virtual conferencing. Over the past two decades,
progress in this domain has been exponential, driven by advances
in computer vision, computer graphics, machine learning, and deep
learning, which have significantly improved the quality and realism
of digital human representations. In this thesis, we present a series
of projects that have advanced the state of the art in capture and
synthesis techniques, enabling the creation of photorealistic avatars
that bring us closer to truly realistic digital humans.

Among these, one of the fundamental requirements for virtual and
mixed reality applications is the metrically accurate reconstruction of
the human head. To enable correct shape capture, we introduce a face
reconstruction approach based on a single-shot regression network
that recovers metrically accurate 3D head geometry from a single
image. Building on this, we present a metrically initialized monocular
face tracker that leverages the recovered face shape to improve the
tracking results. Furthermore, we propose an extension to existing
benchmarks to enable the quantitative evaluation of metric reconstruc-
tion accuracy. However, metrical precision is not the only challenge.
A key limitation of current avatar methods is their inability to adapt
to changes in the appearance of the driving actor. To overcome the
constraints of offline-trained, pre-recorded avatars, we introduce a
real-time reconstruction and rendering pipeline capable of instanta-
neously capturing and synthesizing metrically accurate 4D human
head avatars. Our method employs neural graphics primitives rigged
via deformation gradients computed between canonical and deformed
spaces, yielding an efficient representation for both capture and synthe-
sis. Furthermore, the pipeline can support continuous avatar updates,
making it particularly well-suited for immersive applications in which
avatar quality can be refined in real time through an online data
stream.

Realistic full-body avatars require not only the accurate capture of
the human head but also the synthesis of fine-grained details, such as
pose-driven wrinkles on clothing and self-shadows. To this end, we
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introduce an efficient neural representation for fully articulated digital
twins that simultaneously encodes facial expressions and garment de-
formations. Our method embeds Gaussian primitives within per-part
tetrahedral cages and leverages deformation transfer by modulating
Gaussian kernel parameters to simulate complex phenomena such as
stretching and sliding. The resulting model is lightweight, operates
in real time, and supports both avatar decomposition and localized
conditioning of deformations. However, this method requires long
enrollment videos, which are not available in scenarios where the user
wants to create an avatar at home. To this end, we propose a few-shot
inversion framework that reconstructs a fully controllable 4D head
avatar from only a handful of in-the-wild images. Our method lever-
ages a prior network trained exclusively on synthetic data. Through a
novel fine-tuning procedure, we demonstrate that, when trained on
a sufficiently diverse synthetic dataset, our approach eliminates the
need for costly multi-view capture setups while achieving high-quality
and robust inversion.

The quality of avatars is often constrained by the capacity of the
underlying neural networks. Achieving ultra-realistic capture typi-
cally requires large and powerful convolutional architectures. How-
ever, such models are often unsuitable for deployment on commodity
devices without dedicated hardware accelerators. To overcome this
limitation while maintaining high-quality output, we introduce a dis-
tillation framework that leverages a pre-trained neural network to
extract a lightweight linear eigenbasis representation. This compact
model enables high-fidelity face modeling and synthesis on com-
modity hardware, marking a significant step toward efficient avatar
representations that serve as practical alternatives to computationally
intensive deep networks. As an application, we develop an image-
space cross-reenactment framework that transfers facial expressions
from a driving actor to our lightweight avatar in real time.

The work presented in this thesis serves as a foundation for numerous
downstream applications. Our contributions advance both the capture
and synthesis aspects of digital humans, with a focus on appear-
ance modeling and reconstruction accuracy. This enables applications
where the emphasis lies in motion generation, under the assumption
that a high-quality human model is provided. In such scenarios, our
methods support the correct synthesis of realistic avatars under novel
expressions, poses, or viewpoints.
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Z U S A M M E N FA S S U N G 1

Multi-modale Erfassung und Synthese digitaler Menschen stellen
eine komplexe und facettenreiche Herausforderung dar. Die realisti-
sche Nachbildung digitaler Zwillinge erfordert die Berücksichtigung
zahlreicher feiner Details. Darüber hinaus sind Menschen äußerst
empfindlich gegenüber visuellen Artefakten; selbst kleine Unstim-
migkeiten bei der Gesichtsrekonstruktion oder der Simulation von
Kleidung können die wahrgenommene Realitätsnähe erheblich be-
einträchtigen. Dennoch spielen diese virtuellen Doppelgänger eine
zentrale Rolle in Anwendungen wie virtueller und gemischter Rea-
lität, Konversations-KI und virtuellen Konferenzen. In den letzten
zwei Jahrzehnten wurde in diesem Bereich exponentieller Fortschritt
erzielt, angetrieben durch Entwicklungen in der Computer Vision,
Computergrafik, dem maschinellen Lernen und dem Deep Learning,
die die Qualität und Realitätsnähe digitaler menschlicher Darstellun-
gen erheblich verbessert haben. In dieser Arbeit präsentieren wir eine
Reihe von Projekten, die den Stand der Technik in der Erfassungs-
und Synthesetechnologie vorangetrieben haben und die Erstellung
fotorealistischer Avatare ermöglichen, die uns realistischen digitalen
Menschen näherbringen.

Eine der grundlegenden Anforderungen für Anwendungen in virtu-
eller und gemischter Realität ist die metrisch genaue Rekonstruktion
des menschlichen Kopfes. Um eine korrekte Formaufnahme zu ermög-
lichen, stellen wir einen Gesichtsrekonstruktionsansatz vor, der auf
einem Single-Shot-Regressionsnetzwerk basiert und aus einem ein-
zigen Bild metrisch genaue 3D-Kopfgeometrie rekonstruiert. Darauf
aufbauend präsentieren wir einen metrisch initialisierten monokula-
ren Gesichtstracker, der die rekonstruierte Gesichtsform nutzt, um die
Tracking-Ergebnisse zu verbessern. Darüber hinaus schlagen wir eine
Erweiterung bestehender Benchmarks vor, um eine quantitative Be-
wertung der metrischen Rekonstruktionsgenauigkeit zu ermöglichen.
Allerdings ist die metrische Präzision nicht die einzige Herausfor-
derung. Eine zentrale Einschränkung aktueller Avatar-Methoden ist
ihre Unfähigkeit, sich an Veränderungen im Erscheinungsbild des
steuernden Akteurs anzupassen. Um die Einschränkungen offline
trainierter, vorab aufgezeichneter Avatare zu überwinden, stellen wir
eine Echtzeit-Erfassungs- und Renderpipeline vor, die in der Lage ist,
metrisch genaue 4D-Kopfavatare sofort zu erfassen und zu syntheti-
sieren. Unsere Methode verwendet neurale Grafikprimitive, die über
Deformationsgradienten zwischen kanonischem und deformiertem
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Raum rigged werden, was eine effiziente Repräsentation für Erfassung
und Synthese ermöglicht. Darüber hinaus unterstützt die Pipeline
kontinuierliche Avatar-Updates, was sie besonders geeignet für im-
mersive Anwendungen macht, in denen die Avatarqualität durch einen
Online-Datenstrom in Echtzeit verbessert werden kann.

Realistische Ganzkörper-Avatare erfordern nicht nur die genaue Er-
fassung des menschlichen Kopfes, sondern auch die Synthese fei-
ner Details wie posengetriebene Falten in der Kleidung und Selbst-
schatten. Zu diesem Zweck stellen wir eine effiziente neuronale Re-
präsentation für vollständig artikulierte digitale Zwillinge vor, die
gleichzeitig Gesichtsausdrücke und Kleidungsdeformationen kodiert.
Unsere Methode bettet Gaußsche Primitive in teilweise tetraedrische
Käfige ein und nutzt Deformationstransfer durch Modulation der
Gauß-Kernel-Parameter zur Simulation komplexer Phänomene wie
Streckung und Gleitbewegung. Das resultierende Modell ist leicht-
gewichtig, arbeitet in Echtzeit und unterstützt sowohl die Zerlegung
von Avataren als auch die lokal konditionierte Steuerung von Defor-
mationen. Diese Methode erfordert jedoch lange Einschreibevideos,
die in Szenarien, in denen der Nutzer zu Hause einen Avatar erstel-
len möchte, nicht verfügbar sind. Zu diesem Zweck schlagen wir ein
Few-Shot-Inversionsframework vor, das einen vollständig steuerbaren
4D-Kopfavatar aus nur wenigen Bildern aus freier Wildbahn rekon-
struiert. Unsere Methode nutzt ein Prior-Netzwerk, das ausschließlich
auf synthetischen Daten trainiert wurde. Durch ein neuartiges Feinab-
stimmungsverfahren zeigen wir, dass unser Ansatz, bei ausreichend
diverser synthetischer Trainingsmenge, auf kostspielige Multi-View-
Erfassungs-Setups verzichten kann und dennoch qualitativ hochwerti-
ge und robuste Inversionen erreicht.

Die Qualität von Avataren ist oft durch die Kapazität der zugrun-
de liegenden neuronalen Netzwerke begrenzt. Die Erreichung ultra-
realistischer Erfassung erfordert typischerweise große und leistungsfä-
hige konvolutionale Architekturen. Solche Modelle sind jedoch häufig
ungeeignet für den Einsatz auf handelsüblichen Geräten ohne dedi-
zierte Hardwarebeschleuniger. Um diese Einschränkung zu überwin-
den und dennoch hochwertige Ergebnisse zu erzielen, stellen wir ein
Distillationsframework vor, das ein vortrainiertes neuronales Netz-
werk nutzt, um eine leichtgewichtige lineare Eigenbasisrepräsentation
zu extrahieren. Dieses kompakte Modell ermöglicht hochqualitati-
ve Gesichtsmodellierung und -synthese auf handelsüblicher Hard-
ware und stellt damit einen bedeutenden Schritt hin zu effizienten
Avatar-Repräsentationen dar, die als praktikable Alternativen zu re-
chenintensiven Deep-Learning-Netzwerken dienen. Als Anwendung
entwickeln wir ein image-space Cross-Reenactment-Framework, das
Gesichtsausdrücke von einem steuernden Akteur in Echtzeit auf unse-
ren leichtgewichtigen Avatar überträgt.

x



Die in dieser Arbeit präsentierten Beiträge bilden eine Grundlage für
zahlreiche weiterführende Anwendungen. Unsere Arbeiten treiben
sowohl die Erfassung als auch die Synthese digitaler Menschen voran,
mit einem Fokus auf Erscheinungsmodellierung und Rekonstrukti-
onsgenauigkeit. Dies ermöglicht Anwendungen, bei denen die Bewe-
gungsgenerierung im Vordergrund steht, unter der Annahme, dass ein
qualitativ hochwertiges menschliches Modell gegeben ist. In solchen
Szenarien ermöglichen unsere Methoden die korrekte Synthese realis-
tischer Avatare unter neuen Ausdrücken, Posen oder Blickwinkeln.
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1
I N T R O D U C T I O N

The creation of digital humans is a complex, interdisciplinary domain
grounded in computer vision, computer graphics, machine learning,
and human-computer interaction. These technologies converge to pro-
duce realistic, controllable, and responsive virtual representations of
people, with applications ranging from immersive communication
and virtual production to gaming, healthcare, and digital assistants.
Beyond technical achievements, the development of artificial humans
also evokes profound philosophical and ethical reflections. Existential-
ism emphasizes the individual creation of meaning; creating avatars
may reflect our existential drive to define or preserve the self [156].
From a theological perspective, the concept that humans are created
“in the image of God” (imago Dei), as stated in Genesis 1:26–27 [180],
implies that by creating digital replicas in our own image, we assume
a quasi-divine role. In the scientific realm, Richard Feynman famously
stated, “What I cannot create, I do not understand” [43], emphasizing the
epistemic value of creation as a form of understanding. Together, these
views invite deeper inquiry into the purpose, identity, and ethical re-
sponsibilities involved in the creation of digital humans. To see where
these philosophical and ethical dilemmas meet lines of code, we must
first unpack the technical pipeline that underlies every digital avatar.

Figure 1.1: This thesis introduces several publications (MICA [233], INSTA
[234], D3GA [231], GEM [232], SynShot [235]) that tackle essential
stages in the creation of digital humans: capturing and synthesis.

This pipeline can be broadly divided into two stages: capturing and
synthesis (Figure 1.1). Each of these stages presents unique challenges
and involves distinct technical problems. The capturing stage encom-
passes appearance estimation, tracking, and reconstruction of human
shape and motion. The goal is to obtain either a new model or co-
efficients for an existing one that can capture the distribution of the
human body, facial geometry, and appearance. For example, statistical
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2 introduction

models such as FLAME [95], SMPL [108], and machine learning-based
generative models [77] provide widely used priors for digital humans.
The synthesis stage involves generating photorealistic representations
conditioned on motion and appearance. Intricate details of the hu-
man face and characteristic garment deformations are essential to
ultimately produce a lifelike digital avatar. Finally, all of these stages
converge in downstream applications such as photorealistic embodied
conversational agents [122] or intelligent virtual agents [109], complet-
ing the pipeline for creating artificial humans that not only resemble
but also behave like real people.

Geometric Capturing humans is a challenging process that often re-
quires multi-view calibrated camera setups to achieve high-quality
results [8, 9]. Many 4D avatar methods [54, 175, 202, 208, 232, 234]
rely on geometric data for both training and testing, making accu-
rate geometry acquisition essential for realistic appearance synthesis.
Figure 1.2 (left) illustrates a volumetric tracking and reconstruction
method for human faces, which produces high-quality registered
meshes using a regression-based approach that can subsequently be
converted into FLAME [95] coefficients. For the problem of in-the-wild
reconstruction from monocular images, where camera parameters
are unknown (Figure 1.2, right), MICA [233] provides a robust alter-
native. This method leverages information from a face recognition
network [31] by mapping its feature space into the FLAME coefficient
space, significantly outperforming other approaches for human shape
reconstruction. Since capturing real humans in multi-view setups is
time-consuming, alternative strategies that leverage large-scale 2D
datasets and self-supervision have gained popularity [33, 39, 55]. An-
other appealing solution is synthetic data [157, 198, 235], which offers
a fully controllable environment; however, many such approaches still
struggle with the sim-to-real domain gap.

Figure 1.2: Geometric Capturing involves obtaining a 3D representation
from single or multi-view camera setups. Given a calibrated multi-
view setup, ToFu [96] produces topologically consistent meshes
using a volumetric representation. In in-the-wild scenarios, where
only a single image is available, MICA [233] regresses metrically
plausible human head reconstructions.



introduction 3

A fundamental aspect of geometric capturing is the representation
and formulation of the model that describes target characteristics such
as shape or expressions. This problem is referred to as modeling, and
it may involve classical machine learning techniques such as principal
component analysis (PCA), as well as more advanced methods includ-
ing generative neural networks or hybrid approaches that combine the
strengths of both paradigms. Figure 1.3 illustrates how models such
as SMPL [108] or FLAME [95] provide only coarse approximations
of shape. GEM [232], on the other hand, models both geometry and
appearance using Gaussian primitives represented as an eigenbasis.
Subsequent methods that build upon SMPL or FLAME, e.g., [113,
150, 152, 154, 205, 206, 227, 234], extend their capabilities to capture
clothing and hair, thereby delivering significantly greater realism and
enhanced modeling flexibility.

Figure 1.3: Modeling transforms captured data into a parametric repre-
sentation that can be manipulated, sampled, and animated.
FLAME [95] and SMPL [108] model only coarse shape geom-
etry. GEM [232] extends this representation to the personalized
case and jointly models both geometry and appearance.

Photorealistic Synthesis involves generating realistic virtual humans
that exhibit lifelike appearance conditioned on motion or expressions.
For example, few-shot inversion methods [86, 157, 175, 209, 225, 235]
enable high-quality, controllable avatar synthesis from only a hand-
ful of input images. A user can upload a few photographs to the
system and, within moments, obtain a 4D avatar suitable for virtual
and mixed-reality environments. Over the past decade, this field has
progressed from simple, low-frequency PCA-based appearance mod-
els [11–13, 182] to highly realistic avatars [54, 106, 151, 232]. Figure 1.4
illustrates several modern methods that either leverage multi-view
prior models or adopt personalized architectures to generate high-
fidelity avatars. INSTA [234] rigs neural graphics primitives [119]
by applying deformation gradients to the primitives. MVP [106], on
the other hand, utilizes a personalized VAE to regress volumetric
primitives attached to the surface of a mesh, which are later ray-
traced and integrated into a final image via volumetric rendering.
SynShot [235] builds a generative model using synthetic datasets only
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and, through pivotal fine-tuning, adapts the network to individual sub-
jects to achieve high-quality avatars. Cap4D [175] employs multi-view
diffusion models to construct a 4D avatar from only four input images.
Those approaches demonstrate how a powerful prior can be distilled
into a personalized avatar and serve as the backbone for downstream
methods [54, 142, 163, 202, 234].

Figure 1.4: Photorealistic Synthesis focuses on generating entirely new faces
or bodies, producing realistic appearance conditioned on ex-
pressions, either through powerful generative prior models (e.g.,
Cap4D [175], SynShot [235]) or via personalized models trained
on a single actor (e.g., MVP [106], INSTA [234]).

Once controllable digital human models are obtained, numerous com-
pelling downstream applications become possible. One particularly
interesting and increasingly popular domain is that of Embodied Con-
versational Agents, Intelligent Virtual Agents, and Social Robotics,
which focuses on how these agents interact with humans through
dialogue, multimodal communication, and adaptive behavior. This
domain also explores applications in education, healthcare, aging,
autism support, and storytelling [109]. Figure 1.5 presents one of the
first works in the photorealism direction: Ng et al. [122] developed
a framework for generating full-body, photorealistic avatars that ges-
ture according to the conversational dynamics of dyadic interactions.
Future directions include exploring motion control [134, 168–170] via
reinforcement learning [127] and decision transformers [25, 190] for
human motion synthesis. These reasoning capabilities would enable
the development of autonomous virtual agents capable of exploring,
learning, and interacting—both with one another and with humans
in virtual meta-worlds. Potential applications include virtual teaching
assistants, telepresence systems, interactive video games, immersive
entertainment experiences and many more.

In summary, this thesis investigates the geometric capture and photo-
realistic synthesis stages of the digital human creation pipeline. The
first project, MICA [233] (Section 3.1), addresses face reconstruction
within the geometric capturing stage: from a single in-the-wild por-
trait, our pipeline reconstructs a metrically accurate 3D face model
suitable for VR/MR applications, where preserving real-world scale is
crucial. In Section 3.4, we present our GEM model [232], also part of
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Figure 1.5: Embodied Conversational Agents are digital humans equipped
with multimodal reactive capabilities, enabling them to act and
move in an authentic and human-like manner. For example, Audio
to Photoreal Embodiment [122] presents a framework for generating
full-body, photorealistic avatars that gesture in accordance with
the conversational dynamics of dyadic interactions.

the geometric capturing stage. Given a high-fidelity head avatar re-
gressor, we derive a lightweight linear eigenbasis representation, akin
to FLAME [95], by applying PCA to the frames regressed from indi-
vidual training sequences, effectively distilling the neural network into
a single-layer linear model. The remaining three projects (Sections 3.3,
3.2, and 3.5) fall under the photorealistic synthesis stage. While each
addresses a different challenge, their unified goal is the photoreal-
istic and controllable creation of face or full-body avatars given a
controlling signal. INSTA [234] (Section 3.2) enables instant creation
and real-time rendering of personalized head avatars. D3GA [231]
(Section 3.3) generates full-body avatars driven by joint-angle vectors
from an underlying parametric body model. Finally, SynShot [235]
(Section 3.5) reconstructs photorealistic 4D avatars from as few as
three in-the-wild images, despite its prior being trained exclusively on
synthetic data.

The motivation for this work is to develop a holistic system ca-
pable of generating virtual human avatars that are appearance-
indistinguishable from real humans. While we address every stage
of the avatar creation pipeline, human appearance remains an ex-
traordinarily complex domain. Challenges such as hair modeling,
tongue articulation, garment simulation, and motion synthesis are still
only partially solved. Although recent years have brought significant
progress in these areas, the creation of fully realistic avatars remains
an open problem. The contributions presented in this thesis repre-
sent a step toward that goal. In the following chapters, we provide a
thorough overview of the necessary background before detailing each
project included in this work.
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Creation of digital avatars is a field that combines a wide range
of disciplines, from traditional computer graphics [19, 93, 182] and
computer vision to neural rendering [44, 58, 106, 222, 224, 227, 234],
generative modeling [1, 73, 126, 235], and, more recently, diffusion
models [75, 83, 84]. It is a vast and interdisciplinary area that demands
expert knowledge across multiple domains to create digital twins that
are indistinguishable from reality [54, 151]. Despite significant progress
in recent years, the field still faces many challenging problems, such as
realistic hair modeling [164, 216], capturing complex social interactions
[109, 122], and achieving robust generalization [28, 209, 225, 235]. This
section covers the fundamental computer vision concepts used in
the work on digital humans. We begin with 3D Morphable Models
(3DMM) [13, 95], followed by face reconstruction [33, 39, 198, 233] and
tracking [20, 151, 181, 182, 233, 236]. Next, we describe appearance
representation using 3D Gaussian Splatting (3DGS) [80] and Neural
Radiance Fields (NeRF) [117] for human heads and full-body avatars.
We conclude this chapter with a comprehensive overview of generative
modeling techniques as applied to digital humans, highlighting recent
advances in diffusion models, rectified flow, and avatar generation
[23, 102, 148]. The following sections are adapted from portions of the
author’s cumulative work, including the author’s accepted conference
papers of [231–235].

2.1 3d morphable models

Eigenfaces [136] represent the first 2D Morphable Model for human
faces, computed on grayscale images using Principal Component Anal-
ysis (PCA), and were applied to tasks such as face recognition. Later,

7
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Shape Pose Expressions

Figure 2.1: Parametrization of FLAME [95]. Left: Variation of the first three
shape principal components across the range of −3 to +3 stan-
dard deviations. Middle: Pose-induced deformations resulting
from the rotation of four out of six neck and jaw joints. Right:
Variation of the first three expression principal components across
the range of −3 to +3 standard deviations.

Blanz and Vetter [13] introduced the 3D Morphable Model (3DMM)
in 1999. Their model was constructed by applying PCA to approx-
imately 200 laser-scanned faces, all aligned to a common template.
The resulting eigenvectors capture the principal modes of variation
in both geometry and albedo. New face shapes and textures can be
synthesized by selecting coefficient vectors δ, σ, and γ, computing
linear combinations of the identity, color, and expression bases, and
adding them to the respective means:

S = S̄ + δBid + γBexpr

C = C̄ + σDid (2.1)

Here, S̄ is the mean shape, Bid and Bexpr are the identity and expres-
sion basis matrices, and δ and γ are their corresponding coefficient
vectors. C represents the low-frequency statistical color texture, with
C̄ as its mean and Did as the color basis. The FLAME model [95]
(Figure 2.1) extends the Basel Face Model (BFM) [13] by incorporating
linear blend skinning (LBS) for realistic head rotation, along with
pose-dependent corrective offsets to capture neck articulation and
eyeball rotations.

Since then, many extensions and modifications have been introduced
to traditional PCA-based models. For instance, localized models [7, 30,
176] were proposed, using manually selected regions for segmentation.
Later, Neumann et al. [121] introduced the use of sparse PCA combined
with a group sparsity constraint to identify localized deformation
components.

The expression space of the Basel Face Model (BFM) is constructed
as an additive offset, typically expressed as γBexpr, where γ denotes
the expression coefficients and Bexpr represents the linear expression
basis. This formulation enables expression transfer between subjects,
but it also introduces a significant limitation: the linear nature of the



2.1 3d morphable models 9

PCA-derived basis restricts the model’s capacity to capture complex
deformations, particularly around the lips and jaw. As a result, the
expressiveness of such models is often inadequate for highly dynamic
facial motions. To overcome this limitation, several approaches have in-
corporated nonlinear modeling techniques. For instance, FLAME [95]
combines linear expression blendshapes with articulated jaw motion
to form a nonlinear expression space that more faithfully captures
anatomical constraints and motion. Ichim et al. [68] propose a biome-
chanically inspired muscle activation model, where expressions are
driven by physical simulation of facial musculature. Koppen et al. [87]
adopt a probabilistic approach by modeling both facial geometry and
appearance using a Gaussian mixture model. While these methods
significantly improve the expressiveness and realism of the resulting
face models, they often do so at the cost of increased model complexity
and computational overhead. Another line of work employs implicit
representations to model expressions. Neural parametric models [125],
trained on monocular depth sequences of the human body, learn to
embed motion into a latent space that is used to represent both shape
and motion. Giebenhain et al. [52] apply the same concept to human
heads, significantly outperforming traditional linear mesh-based mod-
els. For a comprehensive overview of 3D face modeling techniques,
we refer the reader to the survey by Egger et al. [36].

2.1.1 Face Reconstruction

Reconstructing human faces and heads from monocular RGB, RGB-D,
or multi-view data is a well-established and actively studied area
situated at the intersection of computer vision and computer graphics
(Figure 2.4). An extensive overview of optimization-based recon-
struction techniques. Particularly, those grounded in the analysis-by-
synthesis paradigm is provided by Zollhöfer et al. [236], who com-
prehensively survey the state of the art in this domain. Monocular
reconstruction approaches often depend on strong priors on facial
shape and appearance to resolve the inherent ambiguity of recover-
ing 3D geometry from a single 2D image under unknown camera
transformations [11, 12, 47, 48, 81, 182–187, 196, 197]. These priors are
typically encoded in the form of parametric face models or statistical
representations, which are optimized to reproduce the observed im-
age through differentiable rendering or direct synthesis. In addition
to optimization-based methods, a rich body of work has emerged
that leverages learning-based regression techniques to directly infer
facial geometry and appearance from input images. A thorough sur-
vey of these regression-based approaches—spanning both supervised
and self-supervised paradigms—is presented by Morales et al. [118],
highlighting key trends and challenges in the field.
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Figure 2.2: 3D face reconstruction and tracking constitute a fundamental com-
ponent in the development of digital avatars. Often, before neural
representations can be effectively employed, high-quality tracked
datasets are required, providing meshes, appearance information,
and other modalities that can be leveraged in learning-based ap-
proaches. The figure is courtesy of Zollhöfer et al. [236].

The advent of the 3D morphable model (3DMM) for human faces
by Blanz et al. [13] marked a significant milestone in face reconstruc-
tion, introducing an optimization-based methodology grounded in
the principle of analysis-by-synthesis. In their work, color reproduc-
tion was optimized using a sparse sampling strategy, which, while
effective, limited the density of the recovered facial details. Subse-
quently, Thies et al. [182, 186] extended this framework by incorpo-
rating a dense photometric term that leverages the full facial region,
made possible through differentiable rendering techniques applied
to the 3DMM. This advancement enabled a range of high-fidelity
applications, including the reconstruction of realistic avatars from a
single image, even capturing complex structures such as hair [66],
as well as the reconstruction of detailed facial reflectance and geom-
etry from unconstrained imagery [211]. Beyond static heads, these
methods have been generalized to support full upper-body reconstruc-
tion and animation [187], and have been used to model avatars with
temporally varying textures [120]. More recently, classical optimiza-
tion pipelines have been augmented with learnable modules, such as
per-vertex surface offsets or view-dependent neural radiance fields,
thereby increasing their expressivity and adaptability [58]. Moreover,
optimization-based face models often serve as a crucial foundation
for modern neural rendering pipelines, including applications such as
deep video portraits [81], deferred neural rendering [185], and neural
voice puppetry [184], where accurate geometry and appearance priors
are essential for photorealistic synthesis and animation.

2.1.2 Optimization-based Human Face Tracking

In recent years, numerous novel methods have been proposed for
the photorealistic creation of human avatars [54, 142, 208, 223, 234].
However, all of these approaches require some form of control signal.
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While some methods employ learned expression encoders [114, 151],
the majority rely on 3D Morphable Model (3DMM) expression vectors.
To provide these, a robust and real-time 3DMM-based face tracker is
essential. Such trackers estimate expression parameters either using
sparse facial landmarks [13, 198], dense photometric loss [182, 186],
or regression-based methods [33, 39], enabling accurate and efficient
expression tracking.

Figure 2.3: Overview of a face tracking pipeline proposed by Thies et al. [182],
which is based on a 3D Morphable Model [13] and enables real-
time reconstruction and tracking of human faces.

Face2Face [182] is a groundbreaking real-time facial reenactment sys-
tem that performs dense photometric optimization using a custom
GPU implementation of a second-order Gauss-Newton optimizer (Fig-
ure 2.3). The employed energy formulation follows the principle of
differentiable shading, which involves sampling both the rasterized and
the ground-truth image and applying an L2 loss, as described in
Equation 2.3. This contrasts with soft rasterizers [88, 90, 103], which
implement continuous and differentiable visibility testing, as expressed
in Equation 2.2. In contrast, traditional pipelines such as OpenGL or
Vulkan perform non-differentiable binary visibility tests, which are
commonly used in sampling-based approaches.

Eimage(P) = ∑
x,y

|I(x, y)− R(x, y, P)| (2.2)

Esample(P) = ∑
S
|I(xS, yS)− CS(P)| (2.3)

This distinction changes the gradient computation, as the sampling-
based formulation requires image-space derivatives:



12 background

∂I
∂xS

= ∇xS I(xS, yS),
∂I

∂yS
= ∇yS I(xS, yS) (2.4)

In contrast, the image-based formulation requires computing the
derivatives of the rendering function R(·) with respect to the ren-
dering parameters P:

∂R
∂P

= ∇PR(x, y, P) (2.5)

In summary, differentiable shading offers a more versatile approach,
as it enables not only the optimization of geometry and camera pa-
rameters, but also of materials and lighting components that together
define the full image formation process. Consequently, methods based
on Face2Face [182] are well-suited for estimating 3DMM expression
coefficients, which can be subsequently used to control digital avatars
at test time in a robust and real-time manner.

2.1.3 Regression-based Reconstruction of Human Faces.

Learning-based methods for facial reconstruction can broadly be di-
vided into two categories: supervised and self-supervised approaches.
Supervised techniques commonly rely on synthetic renderings of hu-
man faces, enabling the training of regressors that predict the parame-
ters of a 3D morphable model (3DMM) from image data [35, 145, 146,
179]. These synthetic datasets provide access to ground truth 3DMM
parameters, which allow for direct supervision during training. In
contrast, Genova et al. [51] propose a hybrid strategy that incorporates
both synthetic and real-world data. While synthetic images facilitate
supervised learning, real images are used to impose multi-view con-
sistency losses, enforcing that the predicted 3DMM parameters are
consistent across different images of the same identity. Their method
uses FaceNet [159] embeddings to guide identity preservation in the
learned latent space. The DECA model [39] builds upon RingNet
[155] by predicting expression-dependent surface offsets in UV space,
enhancing the reconstruction of facial deformations. It is trained us-
ing dense photometric self-supervised losses applied to in-the-wild
images, improving both geometry and appearance fidelity. A similar
decomposition strategy, separating coarse geometry (from the 3DMM)
and detailed surface variations (via bump or displacement maps), was
earlier introduced by Tran et al. [188]. Chen et al. [24] further extend
this idea by combining supervised learning from synthetic renderings
with self-supervised objectives to infer both texture and displacement
maps from single-view images. Deng et al. [33] propose a framework
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trained with hybrid-level losses, incorporating multi-image consis-
tency constraints, photometric reconstruction losses with skin-specific
attention masks, and perceptual losses guided by FaceNet [159] em-
beddings. In parallel, Generative Adversarial Network (GAN)-based
methods have emerged to predict high-frequency details. These in-
clude approaches for estimating detailed UV-space color maps [49, 50]
and physical skin properties such as albedo, normals, and specular
reflectance [91, 92, 153, 211]. While these works focus on achieving
photorealism and expressive detail, the present work is instead fo-
cused on reconstructing metrically accurate 3D face representations,
prioritizing correctness of spatial scale and geometry over fine-scale
texture fidelity. A key challenge in self-supervised monocular meth-
ods is the inherent depth-scale ambiguity: the absolute face size, its
distance to the camera, and the perspective projection can all vary in
ways that produce similar 2D observations. As a result, such models
often predict faces at an incorrect scale. This limitation persists even
though 3DMMs are inherently defined in a metrically calibrated space.

2.2 human head avatars

Figure 2.4: Neural rendering encompasses a broad class of techniques for
tasks such as novel-view synthesis of static and dynamic scenes,
generative object modeling, and photometric scene relighting. Its
popularity in digital avatar creation stems from its ability to learn
photorealistic human appearance models directly from data. The
illustration is courtesy of Tewari et al. [177, 178].

Most face representation and tracking pipelines rely on parametric
3D morphable models (3DMMs) [13, 95], which provide a compact
and expressive prior for human facial geometry and appearance. In
recent years, photorealistic 3D avatar generation has shifted toward
neural implicit representations, in particular neural radiance fields
(NeRFs) [117] and volumetric primitives such as 3D Gaussians [80],
which allow for more faithful modeling of complex appearance and
lighting phenomena.

A foundational contribution to NeRF-based avatar modeling is NeR-
Face [44], which integrates a parametric 3D morphable model (3DMM)
with a neural radiance field by conditioning the radiance field on ex-
pression parameters obtained from the Basel Face Model (BFM) [13,
182]. This paradigm inspired a broad range of subsequent methods [46,
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58, 139, 210, 223, 227, 228, 234], which aim to more tightly couple ra-
diance fields to 3DMM geometry. A common strategy is to use the
deformation fields defined by the 3DMM to warp volumetric features
into canonical space, enabling consistent correspondence across ex-
pressions and viewpoints. To further improve visual fidelity, several
approaches integrate StyleGAN2-like generative architectures [78]
into the NeRF rendering framework. For example, GANAvatar [73],
PanoHead [1], and EG3D [21] leverage triplane feature representations
to construct high-resolution NeRFs with strong identity preserva-
tion and photo-realism. Among them, GANAvatar [73] demonstrates
the feasibility of creating personalized avatars from sparse inputs
by leveraging the generative prior for texture synthesis and identity
consistency. A method closely related to ours is StyleAvatar [191],
which employs a 3DMM-based tracking pipeline as a foundation. The
method learns a personalized facial avatar using a StyleUNet decoder
conditioned on features from a pretrained StyleGAN [78], enabling
real-time rendering. Despite its efficiency, StyleAvatar relies heavily
on image-to-image translation networks, which can introduce visible
artifacts and are sensitive to tracking misalignments. In contrast, our
method avoids such issues by employing 3D Gaussian splatting and a
learned corrective field, which compensates for tracking inaccuracies
directly in 3D space while maintaining geometric consistency and
photorealism. IMAvatar [227], another related method inspired by
the 3DMM paradigm, learns an implicit representation of appearance
jointly with expression-dependent blendshapes and blend skinning
weights. The method optimizes an implicit surface representation
by combining the ray marching technique of Yariv et al. [215] with
root-finding of the occupancy function, as introduced in SNARF [26],
to compute canonical correspondences of deformed surface points.
However, we observed that training IMAvatar is computationally ex-
pensive (requiring approximately five days) and can be unstable, with
occasional divergence during optimization. Recent approaches have
replaced NeRF with more versatile 3D Gaussian Splatting (3DGS)
representations [80]. GPHM [209] employs a cascade of MLPs to gen-
erate Gaussian primitives anchored to a parametric model, enabling
expression control and inversion, albeit conditioning solely on the
avatar’s shape. Its successor, GPHMv2 [209], augments this framework
with a dynamic module and an expanded dataset, further improv-
ing reenactment fidelity. HeadGAP [225] likewise leverages MLPs,
incorporating part-based features and additional color conditioning
to enhance visual quality. In contrast, SynShot [235] explicitly learns
Gaussian primitive parameters by modeling their distribution via a
VQ-VAE [189], thereby dispensing with a mesh scaffold at test time by
embedding shape information directly in its latent space.
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2.3 full-body avatars

Figure 2.5: Modeling full-body avatars is a highly challenging task, as it in-
volves capturing complex aspects such as body motion, garments,
hair, and facial expressions. The figure is courtesy of [65, 98, 132,
172].

Controllable full-body human avatar reconstruction remains a sig-
nificant challenge in computer vision and computer graphics, as il-
lustrated in Figure 2.5. Existing methods typically rely on dynamic
Neural Radiance Fields (NeRF) [116, 128, 129], point-based repre-
sentations [112, 207, 228], or hybrid approaches [4, 39, 106, 234].
However, these techniques often face limitations such as slow render-
ing speeds and insufficient disentanglement between garments and
body geometry, which restricts their generalization to unseen poses.
Recently, the integration of 3D Gaussian Splatting (3DGS) into dy-
namic human modeling has opened up promising new directions [98,
142, 202, 208, 228]. A notable example is D3GA [231], which enables
pose-controllable full-body avatars by leveraging multi-view video
sequences and skeletal motion data. This is achieved by combining
3DGS [80] with cage-based deformation techniques [67, 70, 72], allow-
ing efficient animation of dynamic avatars with high visual fidelity.

Neural Radiance Fields (NeRF) [117] have become a de facto standard
for avatar appearance modeling, representing scenes as continuous
volumetric functions of density and color encoded by a multi-layer per-
ceptron (MLP). Rendering is accomplished via ray marching and volu-
metric integration of samples along each ray [74]. Numerous works
have adapted NeRF to dynamic human performance capture—e.g.,
HyperNeRF [129], NeuralSF [99], Nerfies [128], D-NeRF [44], Instant-
NGP [234], DiNer [139], PointNeRF [207], and Uni-Warp [212]—achiev-
ing high-fidelity animated avatars. However, the majority of these ap-
proaches treat the avatar as a single homogeneous volumetric layer [94,
116, 133, 171–173, 229], which limits their ability to model complex
phenomena such as loose garments or cloth sliding. To mitigate this,
hybrid frameworks [40, 41] fuse explicit parametric geometry (e.g.,
SMPL [107]) with implicit dynamic NeRFs, improving garment fi-
delity at the cost of pose generalization. More recently, TECA [218]
has extended the SCARF architecture into a generative paradigm, en-
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abling text-driven synthesis of NeRF-based accessories and hairstyles
via natural language prompts. 3D Gaussian Splatting (3DGS) has re-
cently emerged as a real-time alternative to NeRF, offering interactive
frame rates and high-fidelity rendering. Its efficiency and versatility
have spurred numerous extensions across diverse domains, including
physics-based simulation [203, 226], virtual reality [71], hair model-
ing [110], head avatar capture [142, 202], fluid dynamics [208], and
large-scale scene synthesis [224, 232, 235]. More recently, convolu-
tional regressors have been introduced to predict Gaussian parameters
directly from images [98, 126, 151], achieving state-of-the-art visual
quality. However, these fixed CNN architectures lack mechanisms for
local conditioning or dynamic adjustment of Gaussian counts, and
impose a substantial memory overhead—up to 1 GiB due to a two
orders of magnitude increase in parameters, which degrades through-
put to around 10 FPS [98]. In contrast, the D3GA pipeline remains
lightweight and extensible, supporting garment-level decomposition,
spatially localized conditioning, and sustained real-time performance.

2.3.1 Point-based Rendering

Prior to the emergence of 3D Gaussian Splatting (3DGS), many re-
construction methods employed point-based rendering [112, 172, 228]
or sphere-based splatting [90], optimizing both the spatial positions
and radii of the primitives during training. For example, NPC [172]
defines a point-based body model for avatar representation; how-
ever, its reliance on nearest-neighbor searches during training incurs
runtimes of up to 12 hours, compared to just 30 minutes for our ap-
proach, making it unsuitable for dense multi-view datasets. Ma et
al. [112] treat garments as a pose-dependent mapping from SMPL
body points [107] into a dedicated clothing space, a formulation later
enhanced by Prokudin et al. [140] through the introduction of a neural
deformation field. While both techniques excel at reconstructing gar-
ment geometry, neither captures surface appearance. Zheng et al. [228]
represent the avatar’s upper body with an adaptive point cloud that
grows during optimization and is rasterized using a differentiable
renderer [195]. Although this method achieves photorealistic local
detail, it frequently exhibits artifacts, such as visible holes, that limit
its robustness for complete avatar reconstruction.

2.3.2 Cage-based Deformations

Cages [124] are a common tool in geometry modeling and anima-
tion, acting as sparse proxy structures whose node manipulations
propagate deformations to all interior vertices. This yields both effi-



2.4 generative modeling of humans 17

cient computation and intuitive control over complex shapes. Wang et
al. [194] introduced “neural cages,” in which a learned network rigs
a source mesh to a target configuration via a deformable proxy, pre-
serving fine-grained details. Garbin et al. [48] extended dynamic NeRF
by embedding tetrahedral cages into the volumetric field, allowing
ray samples to be “unposed” through tetrahedron–ray intersections.
Although this approach delivers real-time performance, high visual
fidelity, and precise control, it is best suited for objects with pre-
dominantly local deformations (e.g., facial geometry) and does not
generalize well to highly articulated, full-body avatars. Peng et al. [135]
proposed CageNeRF, which applies a low-resolution cage to deform a
radiance field for avatar modeling. While their method can be scaled
to full-body reconstructions, the coarse cage fails to capture intricate
details such as facial features or complex non-rigid motions.

2.3.3 Playback Volumetric Videos

Playback methods [17, 38, 69, 97, 199, 214] represent a scene as a
time-conditioned function that cannot be arbitrarily controlled, allow-
ing only for a novel viewpoint synthesis while traversing the time
axis. Yang et al.[214] extended the representation of 3DGS [80] into
4DGS, effectively incorporating time into the primitive representation.
Wu et al.[199] combine Gaussians with 4D neural voxels, inspired by
HexPlane [17], which achieves real-time rendering and novel-view
synthesis. However, these solutions fall into a different class of algo-
rithms compared to pose-conditioned drivable avatars, which is our
goal.

2.4 generative modeling of humans

StyleGAN [77] initiated a new paradigm in digital human synthesis by
enabling the generation of highly realistic human faces. Subsequent
work [76, 78] further refined the architecture and improved image fi-
delity. An alternative generative modeling framework is the variational
autoencoder (VAE) [82], which gave rise to volumetric representations
such as Neural Volumes [105], the Mixture of Volumetric Promitives
method [106], and the broader line of research on codec avatars [4,
114, 115, 144, 151]. More recently, diffusion-based models [63, 123,
148, 165–167] have emerged, outperforming GANs in image synthesis
quality. Finally, flow-matching approaches [61, 101, 102, 104] offer yet
another powerful paradigm, further advancing avatar generation. In
this section, we review these key generative modeling techniques in
the context of digital avatars.
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2.4.1 GAN

Generative adversarial networks (GANs) [56] are a class of generative
models that train two neural networks in opposition: a generator,
which synthesizes data samples from random noise, and a discrimi-
nator, which distinguishes real data from generated samples. During
training, the generator improves by attempting to fool the discrim-
inator, while the discriminator becomes more adept at identifying
generated outputs (Equation 2.6). This adversarial process drives the
generator to produce increasingly realistic data, making GANs par-
ticularly effective for high-fidelity image synthesis, style transfer, and
other creative generation tasks.

min
G

max
D

V(D, G) = Ex∼pdata

[
log D(x)

]
+ Ez∼p(z)

[
log

(
1−D(G(z))

)]
.

(2.6)

StyleGAN has emerged as a versatile backbone for digital avatar syn-
thesis, employed both as a high-fidelity texture generator [3, 91] and as
the foundation for full 3 model generation [1, 21, 22, 73]. Pi-GAN [22]
unifies color and geometry synthesis by integrating volumetric ren-
dering with a StyleGAN mapping network augmented via FiLM con-
ditioning [137]. EG3 [21] further enhances multi-view consistency by
representing features as a triplanar grid: feature maps are predicted on
three orthogonal planes, from which volume density and opacity are
sampled and subsequently rendered. LatentAvatar [210] incorporates
image-based conditioning to guide the generative process, improving
fidelity to input poses and expressions. More recently, PanoHead [1]
replaces the triplanar representation with a multi-layered voxel grid to
eliminate rear-head artifacts and support full-head avatar reconstruc-
tion. Despite these advances, common artifacts, particularly around
the teeth, remain an open challenge for photorealistic avatar genera-
tion. Athar et al.[3] propose leveraging a GAN-based prior to enhance
in-the-wild facial textures by inpainting missing regions with a model
trained on multi-view studio-captured texture data. When combined
with the authentic avatars creation framework of Cao et al.[18], this
approach yields realistic 3 avatars from a single phone scan.

2.4.2 VAE

Variational autoencoders (VAEs) [82] are a class of generative models
that learn a continuous latent representation of data by combining
an encoder network, which maps observations to a parameterized
distribution over latent variables, with a decoder network, which
reconstructs observations from samples drawn from this distribution.
Training proceeds by optimizing a tractable lower bound on the data
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log-likelihood, known as the evidence lower bound (ELBO), which
balances reconstruction accuracy with regularization of the latent
space via a prior distribution (Equation 2.7). This framework enables
efficient inference and sampling, making VAEs a versatile tool for tasks
such as data generation, representation learning, and unsupervised
feature extraction.

L(θ, ϕ; x) = Ez∼qϕ(z|x)
[
log pθ(x | z)

]
− KL

(
qϕ(z | x) ∥ p(z)

)
. (2.7)

Neural Volumes by Lombardi et al. [105] was among the first ap-
proaches to model dynamic scenes using a volumetric representation
learned via a variational autoencoder (VAE). This work initiated a
research direction now known as codec avatars. Ma et al. [114] ex-
tended this framework by introducing a rendering-adaptive per-pixel
decoder, achieving compact and efficient rendering. The Mixture of
Volumetric Primitives (MVP) model [106] employs a VAE to infer
textures for a 323 voxel grid, which is subsequently mapped onto a
mesh and rendered through volumetric integration. Cao et al. [18] fur-
ther developed a powerful encoder–decoder architecture to construct
a prior for avatars derived from a short mobile phone video. Saito
et al. [151] proposed a VAE-based method that regresses relightable
Gaussian primitives instead of voxels [106], enabling ultra-realistic
avatar synthesis. Finally, SynShot [235] builds a VAE with latent-code
quantization to create a synthetic prior, which is then used for few-
shot inversion with pivotal fine-tuning to bridge the domain gap.
The compression capabilities of VAEs serve as a backbone for many
downstream applications. Esser et al. [37] introduce a layered VQ-VAE
framework that learns highly expressive codebooks over data distri-
butions, which are subsequently modeled using an autoregressive
transformer architecture to produce high-quality images for image
synthesis tasks. Rombach et al. [148] leverage VAEs to generate latent
codes as compressed representations, over which the diffusion process
operates, contrasting with full-resolution image-based diffusion in
pixel space. For video generation, 3D-VAEs have also proven effective,
serving as a video compression method into a temporal latent space.
Ho et al. [64] demonstrate how a 3D-UNet [29]—which, in essence,
extends the original 2D-UNet architecture along the temporal axis
and incorporates temporal attention for improved stability—enables
generative video diffusion models. This approach has since become
widely adopted in the video generation community [15].

2.4.3 Diffusion

Diffusion models are likelihood-based generative frameworks that
gradually corrupt data through a fixed, forward Markovian diffusion
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process and recover it via a learned, reverse denoising process. In the
forward diffusion, Gaussian noise is injected over T small steps as

q(xt | xt−1) = N
(
xt;

√
1 − βt xt−1, βt I

)
,

while the reverse process is modeled by

pθ(xt−1 | xt) = N
(
xt−1; µθ(xt, t), Σθ(xt, t)

)
.

Training minimizes a simplified denoising objective that provides a
tight bound on the negative log-likelihood and produces high-fidelity
samples as T grows:

Lsimple(θ) = Et,x0,ϵ
∥∥ϵ − ϵθ

(√
ᾱt x0 +

√
1 − ᾱt ϵ, t

)∥∥2, (2.8)

where ᾱt = ∏t
s=1(1 − βs) and ϵ ∼ N (0, I). For a comprehensive treat-

ment of diffusion-based generative modeling, we refer the reader
to the foundational non-equilibrium thermodynamics framework of
Sohl-Dickstein et al. [165], the score-based perspective of Song and Er-
mon [167], the original denoising diffusion probabilistic models of Ho
et al. [63] along with its improvements by Nichol and Dhariwal [123],
the development of implicit sampling via DDIM by Song et al. [166],
and the extension to high-resolution latent spaces by Rombach et
al. [148]. Diffusion-based methods have spurred extensive research
in digital avatar synthesis. GGHead [84] applies a diffusion process
over Gaussian primitives to generate static human head representa-
tions. Kirschstein et al. [83] combine deferred neural rendering with
an underlying neural parametric head model to translate geometric
cues into photorealistic outputs. Cap4D [175] employs a multiview
diffusion model based on Cat3D [45] to learn a dynamic prior from
multi-view data, which is then distilled into a real-time 4D avatar.
FaceLift [111], following GS-LRM [219], uses a multi-view latent dif-
fusion model (LDM) to regress image-space Gaussian primitives for
static faces. Avat3r [86] extends this same concept to dynamic avatars.
Recent advancements incorporating Vision Transformers (ViT) [34]
and Diffusion Transformers (DiT) [131] have further enhanced rep-
resentational fidelity. Pippo [75] constructs a prior model leveraging
DiT for single-shot inversion of full-body avatars, while Giebenhain
et al. [55] utilize DiT for tracking and reconstruction via predicted
normal maps and optimization-based tracking. Diffusion models have
also become increasingly popular for motion generation [193]. Guzov
et al. [62] employ a head-mounted device to simultaneously generate
and reconstruct full-body human motion. Karunratanakul et al. [79]
leverage pre-trained motion diffusion models as priors for diverse
tasks by backpropagating gradients from task-specific criteria defined
in motion space through the entire denoising process to refine the
latent noise.
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3.1 metrical accurate human shape regression

Towards Metrical Reconstruction of Human Faces

Wojciech Zielonka, Timo Bolkart, Justus Thies

European Conference on Computer Vision (ECCV), Tel-Aviv, Israel, 2022

3.1.1 Motivation

Inferring 3D geometry from 2D images is a fundamentally ill-posed
inverse problem [6]. A common approach is to employ a statistical
prior such as FLAME [95], which extends the 3D morphable model
introduced by Blanz and Vetter in 1999 [13]. However, scale ambiguity
persists: under perspective projection, a small face close to the camera
can produce the same image as a larger face farther away. Formally,
let x ∈ R3 be a point on the face and p ∈ R2 its projection onto the
image plane. Then

p = π
(
R x + t

)
= π

(
s [R x + t]

)
= π

(
R (s x) + s t

)
, (3.1)

where π(·) denotes the perspective projection, R ∈ R3×3 the rotation,
t ∈ R3 the translation, and s ∈ R an arbitrary scale factor. Since
scaling x and t by s leaves p unchanged, the true metric size of the

21
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face cannot be recovered without additional information. As a result,
these reconstruction techniques can achieve precise 2D alignment yet
still fail to recover the true 3D dimensions and spatial placement of
the face [33, 39]. However, metrically accurate 3D geometry is crucial
whenever the face must interact within a real-world or virtual metric
environment. For example, placing the reconstructed face into a vir-
tual reality setting or using it in augmented reality applications, such
as AR/VR teleconferencing or virtual try-on, causes these methods to
break down, since they do not recover the face’s true scale and shape.
To address this, we leverage a face recognition network pretrained on a
large 2D dataset [31] to extract robust, identity-discriminative features,
and map these features to FLAME shape coefficients by training a
regressor network. The regressor is supervised using a high-quality
3D dataset containing mesh-image pairs, thereby creating a 2D-to-3D
mapping. Our method inherits the robustness of the recognition net-
work and significantly outperforms prior reconstruction approaches,
reducing the average error by 15% on standard benchmarks and by
24% on our proposed evaluation metrics.

3.1.2 Results

To comprehensively evaluate our method, we follow two established
non-metric benchmarks as well as our proposed metric benchmark.
Face shape estimation is assessed on datasets that include reference 3D
scans of the subjects. Specifically, we compare against the non-metric
NoW Challenge [155] and the benchmark of Feng et al. [42], both of
which are used by recent state-of-the-art methods [33, 39, 155], and
we additionally report results on our new metric evaluation.

3.1.2.1 Non-Metrical Benchmark

Current evaluation protocols on these datasets incorporate an optimal
scaling step when aligning predicted shapes to ground-truth scans,
solving for both a rigid transformation and a scale factor, thereby
reporting a non-metric (relative) error. This post-hoc scaling masks
true shape inaccuracies: for example, on the NoW Challenge [155], the
mean error of the average FLAME mesh [95] drops from 1.92 mm to
1.53 mm after scale optimization, a ∼ 20% reduction despite no actual
improvement in reconstruction quality. As a result, these benchmarks
can overstate real performance. We evaluate our method under the
same protocols and show that it significantly outperforms all prior
state-of-the-art approaches.
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3.1.2.2 Metrical Benchmark

Many real-world applications require reconstructions with a true met-
ric scale. To meet this demand, we propose a new evaluation protocol
that uses only rigid alignment and forgoes any scale optimization. By
enforcing a purely rigid fit, our protocol directly measures metric error,
making it fundamentally different from existing relative-error schemes.
Additionally, the benchmark by Feng et al. [42] relies on sparse, hand-
selected facial landmarks for alignment, a process our experiments
show to be highly marker-dependent and prone to inconsistent results.
Instead, we adopt the standardized landmark correspondences pro-
vided with the FLAME model [95]. Furthermore, we re-evaluate the
Feng et al. benchmark using the dense Iterative Closest Point (ICP)
method from the NoW Challenge. Across all metrics, our approach
delivers substantial improvements in reconstruction accuracy.

3.1.2.3 Metrical Face Tracking

As an example application, we use our metrically accurate face shape
predictions to initialize an analysis-by-synthesis [13] facial expression
tracker. Unlike approaches such as [33, 39], our method employs a
full perspective camera model, allowing us to recover absolute depth.
We measure dense photometric error (RMSE) and observe that our
initialization yields substantially lower error than regression-based
methods [33, 39]. Moreover, when compared to Face2Face [182], which
also uses a perspective model but reports an average depth RMSE of
11.0 mm, our metric face shape estimator reduces this error to just 5.7
mm, significantly enhancing tracking quality.

3.1.3 Discussion

In this work, we evaluated several face-reconstruction methods with
respect to their ability to recover metrically accurate 3D shapes. True
metric reconstruction is crucial whenever precise measurements of
distances and dimensions are required, especially when integrating
reconstructed humans into scenes containing objects of known size,
such as in virtual or augmented reality applications. We demonstrate
that current methods and evaluation protocols are not designed for this
purpose. Although existing benchmarks report errors in millimeters,
they rely on an optimal scaling step to align the prediction with the
ground truth, yielding relative rather than absolute measurements.
We contend that this practice is misleading and fails to reflect true
metric accuracy. To address this, we introduce a straightforward yet
essential modification: eliminate the scale optimization and permit
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only rigid alignment between the predicted and reference shapes,
enabling genuine metric evaluation.

3.1.4 Contributions

To pave the way for metrically accurate reconstructions, we first consol-
idated existing small- and medium-scale datasets of paired 2D images
and 3D scans. This unified dataset enables us to impose direct 3D
supervision in our novel shape-prediction framework. Although our
combined dataset remains modest in size (∼ 2, 000 identities), our
model architecture leverages features from a face-recognition network
pretrained on a large-scale 2D image corpus, allowing it to generalize
to in-the-wild images. Through extensive experiments, we demon-
strate state-of-the-art performance on both our newly proposed metric
benchmarks and on traditional scale-invariant evaluations. We hope
this work encourages the community to focus on metrically grounded
face reconstruction and highlights the potential pitfalls of relying
solely on non-metric evaluation protocols.
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3.2 instant head avatar creation

Instant Volumetric Head Avatars

Wojciech Zielonka, Timo Bolkart, Justus Thies

IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Vancouver, Canada, 2023

3.2.1 Motivation

For immersive AR/VR telepresence, we need digital avatars that not
only replicate users’ motion and facial expressions in real time but
also match their true shape and appearance. Rather than relying on
pre-trained avatars, we propose Instant Volumetric Head Avatars (IN-
STA), a system that constructs a metrically accurate human avatar in
just a few minutes (∼ 10 min) and drives it at interactive frame rates
using only commodity hardware and a single RGB camera, where pre-
vious techniques require days to train, up to a week in some cases [44,
58, 227]. INSTA leverages dynamic Neural Radiance Fields [44] built
on Neural Graphics Primitives [119], embedded around a paramet-
ric FLAME face model [95], to achieve fast training and real-time
rendering. Crucially, we employ a metrically accurate face recon-
struction [233] so avatars have true-to-scale dimensions suitable for
environments with known-size objects. We define a canonical space
for our Radiance Field and use the FLAME-based motion to drive a
deformation field implemented via deformation gradient and bound-
ing volume hierarchy to map points from each frame’s deformed
space back into the canonical frame for NeRF evaluation. To capture
fine-scale details (e.g., wrinkles, mouth interior), we condition the
NeRF on expression parameters. Finally, during training, we further
regularize novel-view synthesis by rendering FLAME-derived depth
maps as a geometric prior for the NeRF [117].

3.2.2 Results

To evaluate image quality and novel-view extrapolation, we compare
our method against NeRFace [44], IMAvatar [227], and Neural Head
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Method L2 ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Time (s) ↓

NHA [58] 0.0022 27.71 0.95 0.04 0.63

IMAvatar [227] 0.0023 27.62 0.94 0.06 12.34

NeRFace [44] 0.0018 29.28 0.95 0.07 9.68

Ours 0.0018 28.97 0.95 0.05 0.05

Table 3.1: Average photometric errors over 19 videos spanning our dataset
and the public NHA, IMAvatar, and NeRFace benchmarks. “Time”
denotes the average rendering time per frame. Our method matches
NeRFace on pixel-wise metrics, achieves low perceptual error, and
is substantially faster to train and evaluate.

Avatars (NHA) [58]. Quantitatively, we assess photometric accuracy
using mean squared error (L2), PSNR, SSIM, and the perceptual metric
LPIPS. Note that IMAvatar is trained at a resolution of 2562 due to its
computational complexity; for fair comparison, we upsample its out-
puts to 5122. All methods produce sharp, photo-realistic frames that
closely resemble the ground truth. However, NHA exhibits the most
noticeable artifacts, particularly around the ears. IMAvatar suffers
from convergence and stability issues on some sequences, leading to
optimization failures and premature training termination. In contrast,
our approach delivers the best overall image quality while signifi-
cantly reducing training and inference time. Novel-view extrapolation
is critical for 3D avatars in AR/VR applications. We observe that
NeRFace produces blurry results around the eyes and teeth, IMA-
vatar shows silhouette artifacts at grazing angles, and NHA suffers
from degraded geometry with strong ear artifacts. By comparison,
our method robustly generates photo-realistic images under unseen
poses and maintains high fidelity, especially in the skin and mouth
regions. In summary, INSTA is orders of magnitude faster than exist-
ing state-of-the-art methods while delivering equal or superior avatar
quality. Its real-time performance and lightweight design support a
wider range of downstream applications, with on-the-fly refinement
as new video frames are received.

3.2.3 Discussion

Although INSTA outperforms current RGB-video-based avatar meth-
ods in both quality and speed, several challenges remain for future
work. First, while our model captures dynamic facial expressions,
it does not account for changing hair geometry, so hair detail lags
behind the fidelity of the face. Second, the employed 3DMM omits
teeth geometry; incorporating a more accurate mouth model would
improve view extrapolation and render a higher–quality mouth inte-
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rior. Third, although we achieve real-time rendering at 5122 resolution,
further speed optimizations are needed to support high-resolution
AR/VR video conferencing. Finally, with additional engineering, the
training stage could run as a background process, continuously refin-
ing the canonical avatar after an initial warm-up period and filling in
previously unseen regions as they become visible during the session.

3.2.4 Contributions

Instant Volumetric Head Avatars introduces a method for rapidly
building fully metric 3D head models from a single RGB video. By
embedding Neural Graphics Primitives [119] around a 3D morphable
face model [95], we optimize a subject’s dynamic Neural Radiance
Field [117] in under ten minutes rather than hours or days. Our
approach incorporates a surface embedded radiance field for fast,
metrically accurate avatar reconstruction and adds a 3DMM-driven
regularization of the density field to improve pose extrapolation, which
is critical for AR/VR. Through comparative evaluations and ablation
studies, we show that INSTA can generate on-the-fly avatars that
match a person’s current appearance, rather than relying on out-of-
date, prerecorded models. We believe this shift toward adaptable, real-
time avatar creation marks a key advance for immersive telepresence.
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3.3 full-body 3d gaussian avatars

Drivable 3D Gaussian Avatars

Wojciech Zielonka, Timur Bagautdinov, Shunsuke Saito, Michael
Zollhöfer, Justus Thies, Javier Romero

International Conference on 3D Vision (3DV), Singapore, Republic of
Singapore, 2025

3.3.1 Motivation

Developing drivable, photorealistic human avatars is key to creating
truly immersive long-distance telecommunication experiences. Be-
cause facial expressions, body movements, and clothing each follow
different deformation patterns, a single-layer model struggles to cap-
ture all the nuances. Instead, multi-layered avatars are needed: one
layer for the underlying body, another for garments (to handle sliding
and folds), and so on. Mixture of Volumetric Primitives (MVP) [106]
pioneered a hybrid approach by embedding volumetric elements onto
a tracked mesh’s surface, yielding excellent results. Yet it fails if the
base mesh is imprecise or lacks detail, causing artifacts and misaligned
primitives. Likewise, CNN-based methods [4, 98, 106, 144] fix the num-
ber of primitives at training time and offer no straightforward way to
decompose garments into separate layers. Moreover, many state-of-
the-art techniques [4, 94, 106, 172] cannot condition different parts of
the avatar independently. Yet such layered conditioning is critical for
realistic motion. Finally, while drivable NeRFs and 3D Gaussian Splat-
ting avatars typically use linear blend skinning (LBS) to map between
canonical and posed spaces, LBS’s limited degrees of freedom can’t
model complex, non-linear deformations. Tetrahedron-based warping,
by contrast, supports richer motion patterns (including stretch) and
more physically plausible behavior.

3.3.2 Results

We benchmark D3GA against five state-of-the-art multiview ap-
proaches [4, 65, 95, 106, 143]. On our dataset, we compare D3GA
to BodyDecoder (BD) [4] and MVP-based avatars [106, 144]. We also
evaluate D3GA on the ActorsHQ dataset [69], using just 40 cameras,
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alongside Animatable Gaussians (AG) [98], 3DGS-Avatar [143], and
Gaussian Avatar (GA) [65], each trained on the same multiview data.
Note that D3GA, 3DGS-Avatar, and GA belong to a lightweight class
of MLP-based models (up to 10 million parameters). In contrast to
the heavy CNN-based MVP, BD, and AG (which require roughly 230

million parameters). All methods are evaluated with SSIM, PSNR, and
the perceptual metric LPIPS [220] on random-color backgrounds. For
ActorsHQ, we obtain SMPL-X fits via OpenPose [20] and scan-to-mesh
optimization. Table 3.2 shows that D3GA achieves the highest PSNR
and SSIM on our dataset compared to MVP [106] and BD [4]. On Ac-
torsHQ, D3GA again leads in PSNR and SSIM among Gaussian-based
avatars. The slightly reduced sharpness reflects our model’s much
smaller size versus the CNN-heavy AG [98]. Furthermore, D3GA
supports layer-wise decomposition of the avatar: each garment layer
can be driven directly by skeleton joint angles, without additional
registration modules.

Dataset Method PSNR ↑ LPIPS ↓ SSIM ↑

Ours
Ours 30.634 0.054 0.964

MVP [106] 28.795 0.051 0.955

BD [4] 29.918 0.044 0.959

ActorsHQ

Ours 26.562 0.065 0.944

GA [65] 24.731 0.088 0.933

3DGS-Avatar [143] 21.709 0.082 0.915

AG [98] 26.454 0.055 0.937

Table 3.2: On our dataset, D3GA achieves the highest PSNR and SSIM com-
pared to BodyDecoder [4] and MVP [106]. Among MLP-based
avatars, D3GA also leads in image quality—only Animatable
Gaussians (AG), with its larger CNN backbone, produces slightly
sharper results.

Our model strikes an effective balance between visual fidelity and pa-
rameter count, yielding a compact, easily portable representation. Un-
like heavier CNN-based approaches such as AG [98], D3GA matches
the footprint of other MLP-based methods while delivering superior
image quality. This combination of efficiency and performance makes
D3GA especially well-suited for telepresence applications.

3.3.3 Discussion

Although D3GA delivers superior visual quality and competitive real-
time performance, several challenges remain. Fine, high-frequency
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textures (e.g., stripes) can still appear blurred; one remedy might be
to regress Gaussian parameters per texel via a variational autoencoder,
as in [98, 106]. Despite our regularizers, loose clothing can self-collide
or exhibit unrealistic wrinkles and shadows. Adding explicit tetrahe-
dral collision detection could help prevent garment interpenetration.
Another promising extension is to swap in the current appearance
model for relightable control. Currently, D3GA is demonstrated on a
handful of subjects captured in a dense multi-view rig, which both
limits real-world deployment and helps prevent misuse (e.g., driving
someone’s likeness without permission), but broadening to in-the-wild
scenarios is an important future direction. Finally, D3GA’s modular
design makes it easy to tailor to specific use cases: one could add more
Gaussians for extra detail or drop the garment supervision module
when precise cage decomposition isn’t required.

3.3.4 Contributions

D3GA introduces a multi-layered framework for animatable human
avatars by embedding 3D Gaussian primitives within deformable
tetrahedral cages. We warp each Gaussian from the canonical to the
posed configuration by directly applying the local deformation gra-
dient to its parameters, resulting in more accurate and artifact-free
deformations. Thanks to its compositional design, D3GA supports
fine-grained conditioning—using facial keypoints for expressions or
other region-specific controls—and can be extended effortlessly to hair,
hands, clothing, or accessories. This flexibility is vital for building
complete avatars driven by diverse input signals. In our experiments,
D3GA delivers higher visual fidelity than comparable state-of-the-art
architectures, all while remaining compact, lightweight, and capable
of real-time performance.
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3.4 distillation of avatars into a linear model

Gaussian Eigen Models for Human Heads

Wojciech Zielonka, Timo Bolkart, Thabo Beeler, Justus Thies

IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Nashville, USA, 2025

3.4.1 Motivation

3D Morphable Models (3DMMs), first introduced by Blanz and Vetter
in 1999 [13], perform Principal Component Analysis (PCA) on ap-
proximately 200 laser-scanned and registered faces to extract the main
modes of variation in geometry and albedo. New faces are generated
by specifying values for each principal component, computing a linear
combination of those components, and adding the resulting offsets
to the mean shape and texture. This linear, mesh-based framework
remains the standard for facial performance capture; both regression-
and optimization-based, and underpins recent neural rendering-driven
3D avatars [36, 177, 178, 236]. However, traditional 3DMMs often lack
fine appearance detail and rely on large CNNs to achieve photorealism.
Such models are computationally expensive, slow down rendering,
and produce checkpoints exceeding 500 MB, making them impractical
for on-device or real-time applications. To overcome these limitations,
we introduce GEM (Gaussian Eigen Models for Human Heads), a per-
sonalized linear appearance model that uses 3D Gaussians as geometry
primitives in the spirit of 3D Gaussian Splatting [80]. Unlike recent
Dynamic 3D Gaussian Avatar methods [98, 126, 142, 151, 208, 224, 231],
GEM is compact and lightweight, avoiding the need for massive CNN
architectures. Our pipeline begins by training a modified U-Net [191]
to predict Gaussian parameters in UV space, establishing a consistent
representation for each subject. We then collect these Gaussian maps
across all training frames and apply PCA to build a small, subject-
specific eigenbasis. The final model captures high-fidelity appearance
variations with an adaptable number of parameters, enabling efficient
distribution and real-time rendering on commodity hardware.
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3.4.2 Results

We evaluate GEM on the NeRSemble dataset [85], which provides
synchronized RGB images from 16 cameras (resolution 802 × 550)
and corresponding tracked meshes [142]. Our baselines are: Gaussian
Avatars (GA) [142], which attaches Gaussians directly to the FLAME
mesh without any neural network; Animatable Gaussians (AG) [98],
which is a CNN-based Gaussian-map predictor; INSTA [234], which
uses dynamic NeRF [117] embedded on the surface of the mesh. Each
baseline follows a two-stage pipeline avatar construction and parame-
ter estimation, and often relies on offline tracking with extra objectives
(e.g., hair reconstruction [53, 142]), preventing fully real-time operation
despite fast rendering. Our approach adds a third stage: building the
GEM eigenbasis, which adds only negligible overhead (∼1 min) on
top of avatar reconstruction. For a fair comparison, we report results
for both our full CNN model (Ours Net) and the distilled linear model
(Ours GEM), driven by analysis-by-synthesis fitting [13, 182, 233]. We
also include cross-reenactment results using our learned coefficient
regressor versus DECA-driven FLAME meshes [39]. All methods are
evaluated on novel expressions and novel views using the train/val
split from Qian et al. [142]. For GEM, we distill 50 PCA components
from 2562 Gaussian-texture maps, yielding ∼60k active Gaussians.
AG uses a similar count for front and back textures, while GA em-
ploys around 100k Gaussians. To compute these results, we measure

Method PSNR ↑ LPIPS ↓ SSIM ↑ L1 ↓

AG [98] 29.01 0.0812 0.9429 0.0099

GA [142] 28.31 0.0815 0.9433 0.0102

INSTA [234] 27.92 0.1153 0.9340 0.0128

Ours Net 29.25 0.0777 0.9448 0.0096

Ours GEM 32.68 0.0675 0.9633 0.0069

Table 3.3: Quantitative evaluation on novel expressions and views across 16

cameras. GEM, driven by analysis-by-synthesis fitting, outperforms
all baselines in PSNR, LPIPS, SSIM, and L1 error.

image-space color errors: PSNR, LPIPS, L1 loss, and SSIM, following
the protocol of Gaussian Avatars [142]. For GEM, we sequentially
optimize the PCA coefficients per image using photometric objec-
tives. Unlike the baselines, which require FLAME-based offsets for
tracking, GEM can be driven directly, simplifying the overall pipeline.
We better capture high-frequency details, pose-dependent wrinkles,
and self-shadows, something which is not possible for methods like
Gaussian Avatars [142] or INSTA [234], since they either do not use
expression-dependent neural networks or limit the conditioning to a
small region only.
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3.4.3 Discussion

We propose a universal method to distill any 3D Gaussian Splat-
ting–based avatar system into a compact Gaussian Eigen Model (GEM),
assuming the availability of normalized Gaussian–image pairs across
the training frames. The only requirement for successful distillation is
a dataset that provides these semantically consistent paired maps for
all deformation sequences. Our experiments demonstrate that this lin-
ear basis representation achieves state-of-the-art performance in both
reconstruction quality and runtime speed. To capture fine, wrinkle-
level details, the original generator must first produce high-resolution
outputs. Furthermore, our distillation pipeline can be applied to exist-
ing approaches such as [235], drastically reducing their computational
and memory footprint. GEM is well suited to commodity hardware: it
synthesizes Gaussian primitives via simple linear combinations of ba-
sis vectors, which enables applications in holoportation, audio-driven
avatars, and immersive virtual reality. Nevertheless, GEM’s global
PCA basis cannot represent very localized deformations or novel fea-
ture combinations outside the training set. To address this, future work
could introduce a localized PCA decomposition [121], enhancing con-
trol over fine-scale variations and broadening the range of expressible
motions. Additional limitations include reduced stability in extreme
side views and the need to retrain GEM for each new subject using
multi-view data. Developing a cross-subject statistical GEM model is
an exciting direction to improve generalization.

3.4.4 Contributions

We introduce Gaussian Eigen Models for Human Heads (GEM), a
linear appearance model for creating photo-realistic head avatars. Its
simple formulation dramatically reduces computational cost com-
pared to CNN-based approaches, while still supporting a wide range
of applications. The compact representation facilitates easier storage,
sharing, and deployment of personalized avatars. GEM also enables
real-time avatar animation from RGB input by allowing control over
the number of eigenbases, offering a tunable trade-off between mem-
ory footprint and visual fidelity. Furthermore, our distillation pipeline
can compress existing avatar frameworks into GEM, making them
lightweight and resource-efficient. Finally, we demonstrate GEM’s ver-
satility through real-time self-reenactment and cross-person animation
scenarios, highlighting its potential for interactive telepresence and
virtual reality applications.
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3.5 building a synthetic prior for few-shot inversion

Synthetic Prior for Few-Shot Drivable Head Avatar Inversion

Wojciech Zielonka, Stephan J. Garbin, Alexandros Lattas, George
Kopanas, Paulo Gotardo, Thabo Beeler, Justus Thies, Timo Bolkart

IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Nashville, USA, 2025

3.5.1 Motivation

High-fidelity, drivable digital avatars are essential for immersive vir-
tual and mixed reality experiences. Traditional asset-based pipelines
for creating photorealistic human heads demand complex capture
setups and extensive manual cleanup, making them both time-
consuming and costly [162]. Recent advances in learning-based ap-
proaches and neural radiance fields [80, 117] have dramatically sim-
plified avatar creation, yielding high-quality neural head avatars with
far less manual effort [44, 114, 191]. Progress includes lightweight
animation control via 3D Gaussians [142, 202, 232] and training times
reduced to minutes [234]. Most methods train on either multi-view
datasets [114, 115, 142, 191, 200] or single-view videos [27, 44, 202, 234],
often requiring hundreds to thousands of frames. Such large datasets
introduce challenges: robustly tracking a coarse head mesh across all
frames, typically by fitting a 3D morphable model [13, 95], can be error-
prone, and existing personalized avatars often generalize poorly to ex-
pressions and viewpoints unseen during training. To reduce data and
capture requirements, recent “few-shot” methods reconstruct avatars
from one or a handful of images [28]. However, these approaches
typically lag behind large-dataset models in rendering fidelity [142,
232]. Some systems improve quality by first learning a multi-identity
head prior, requiring large, multi-view datasets, and then fine-tuning
to the target subject [209, 225]. Capturing and managing such datasets
is expensive, and compliance with privacy regulations (e.g., GDPR)
adds further operational burden, since derivatives and trained models
must be purged periodically upon participant request. An alternative
is to build priors from large in-the-wild collections such as FFHQ [77],
which underpins several GAN-based inversion methods [32, 174, 222].
Yet these often introduce artifacts in novel-view synthesis and struggle
to preserve identity. Ultimately, a prior’s expressive power depends on
the diversity of its training data (ethnicity, age, facial features, expres-
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sions), the quality and calibration of the capture hardware (lighting,
camera density, frame rate), and the reliability of preprocessing steps
(mesh tracking, background masking). Unlike previous approaches
that require expensive real-world capture, SynShot trains its head
prior entirely on synthetic 3DMM renders, eliminating costly hard-
ware and privacy concerns. Drawing on successes in synthetic-data
methods for 3D face regression [161], landmark prediction [198], and
few-shot reconstruction [16, 192, 217], we use a large, diverse synthetic
dataset. To adapt to real inputs, we fit this prior and then fine-tune
with pivotal tuning [147]. From just three images, SynShot produces a
photorealistic 3D Gaussian avatar [80] via a UV-space CNN [98, 151,
232], outperforming state-of-the-art monocular methods [163, 202, 234]
and GAN-based ones [32, 174, 222].

3.5.2 Results

We compare SynShot to two categories of methods: personalized
monocular pipelines and general inversion-based approaches. The
personalized monocular method: INSTA [234], Flash Avatar [202],
and SplattingAvatar [163]—all rely on FLAME meshes [95]. For
these, we evaluate on an ensemble of four datasets [44, 58, 227,
234], each processed with the FLAME tracker from Zielonka et
al. [233]. SplattingAvatar follows Zheng et al. [227] using DECA [39]
for pose and expression regression; in our implementation, we replace
DECA with an in-house regressor of comparable accuracy. To avoid
bias, we select training frames according to the Fibonacci sequence
Fn = {1, 2, 3, 5, 8, . . . , 987}. All experiments use progressive farthest-
point sampling [141] in the 3DMM expression space to choose frames.
Self-reenactment performance is measured on the last 600 frames of
the INSTA dataset [234] using LPIPS and SSIM. Finally, we perform a
thorough evaluation and compare SynShot against the state-of-the-art
inversion-based methods Portrait4D [32], Next3D [174], and InvertA-
vatar [222], demonstrating that SynShot significantly outperforms all
of them.

3.5.2.1 Monocular Avatar Cross-Reenactment

Cross-reenactment evaluates generalization to unseen expressions and
viewpoints. Although as few as 13 frames can yield strong perfor-
mance in-distribution, existing monocular methods [44, 58, 163, 202,
234] often produce artifacts when driven by out-of-distribution se-
quences. In contrast, SynShot requires only three images. Utilizing the
synthetic prior with a clear shape–expression disentanglement net-
work, it outperforms state-of-the-art pipelines trained on thousands of
frames, demonstrating the value of a robust prior.
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3.5.2.2 GAN-based Baselines

We benchmark SynShot against three animatable GAN-based avatars.
Both SynShot and InvertAvatar [222] use three input images; Por-
trait4D [32] and Next3D [174] use a single image. Quantitatively,
SynShot achieves an LPIPS of 0.0236, compared to 0.0962 for InvertA-
vatar, 0.0843 for Portrait4D, and 0.2274 for Next3D, confirming that
SynShot significantly outperforms all GAN-based baselines. Quali-
tatively, SynShot preserves identity and remains stable under novel
views and expressions, whereas GAN-based methods often introduce
artifacts in side views.

3.5.3 Discussion

While SynShot significantly outperforms monocular and GAN-based
methods, it still faces several limitations. The primary challenge re-
mains bridging the domain gap between synthetic training data and
real-world inputs. In our current pipeline, all synthetic subjects share
identical teeth geometry and textures, causing inverted avatars’ mouth
interior details to adhere too closely to the prior and lack individual
variation. Likewise, expression-dependent wrinkles are underrepre-
sented in the synthetic dataset, diminishing fine-scale realism in the
reconstructed avatars. Additionally, we render all synthetic heads un-
der a single environment map, which limits generalization to diverse
lighting conditions. Future work should focus on enriching the syn-
thetic corpus by varying tooth models, adding wrinkle morphologies,
and using multiple environment maps to further improve the visual
fidelity of the personalized head avatars.

3.5.4 Contributions

We introduce SynShot, a novel method for reconstructing personalized
3D Gaussian head avatars from only a few images. SynShot first trains
a generative avatar entirely on synthetic data and then uses it as a prior
in an inversion pipeline. This pipeline employs a pivotal tuning strat-
egy that effectively bridges the domain gap between synthetic priors
and real input images. We demonstrate that our personalized avatars
generalize more robustly to unseen expressions and viewpoints than
current state-of-the-art head models. Additionally, the reconstructed
Gaussian point cloud can be distilled into a lightweight, network-
free representation using GEM [232], removing the requirement for
high-end GPU hardware.
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This thesis focuses on a broad range of topics within the field of
digital humans, including the reconstruction of metrically accurate
heads, real-time avatar creation, full-body avatars, efficient storage
and representation of Gaussian avatars, and few-shot inversion. All of
these components are crucial for building a holistic system capable of
representing avatars that are indistinguishable from reality. However,
this goal remains ahead, as it requires integrating additional aspects
not addressed in this work, such as hair and garment modeling, as
well as human–scene interactions. With the advent of powerful new
representations such as flow matching models and diffusion-based
approaches, the field of digital humans is expected to progress rapidly,
enabling novel applications such as real-time telepresence, holographic
teleportation, and extended VR/MR systems that enhance everyday
communication and productivity. Moreover, sparse 3D datasets can be
effectively complemented with large-scale 2D datasets, consisting of
videos and images, to build strong priors for avatar inversion, scene
interaction, motion generation, and many other tasks, fundamentally
shifting the paradigms of 3D avatar creation as known so far. In this
section, we summarize the contributions made in this work, discuss
their limitations, outline directions for future research, and conclude
with final remarks.

4.1 summary of contributions

Section 3.1 introduced MICA [233], a regression-based method that
advances metrically accurate prediction of human head geometry.
The pipeline was trained on a combined dataset composed of several
smaller datasets, each containing paired 3D geometry and 2D images.
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By leveraging the robust face recognition network ArcFace [31], the
method effectively maps 2D image features to 3D human shape, sup-
porting the hypothesis that ArcFace implicitly learns geometric infor-
mation from images alone. As a practical application, we implemented
a monocular metrically-accurate face tracker, which outperformed
existing methods due to significantly improved initialization of the
predicted shape using MICA.

Section 3.2 introduced INSTA [234], a novel method for instanta-
neously reconstructing an avatar and driving it in real-time. This was
achieved by incorporating a deformation field represented by the Jaco-
bian matrix between the canonical and deformed spaces. Leveraging
this information, NeRF samples could be efficiently mapped from the
deformed space to the canonical space using the deformation gradient
of the closest triangle. Real-time performance was enabled through
the use of a bounding volume hierarchy (BVH) built around the mesh
to facilitate fast nearest-neighbor searches. INSTA was also capable of
continuously updating the canonical space based on a stream of input
images, allowing for dynamically adjustable quality. This work rep-
resents a significant step toward on-demand avatar creation without
relying on personalized networks trained over several days, as was
the case in previous approaches.

Section 3.3 presents D3GA [231], a novel method with the following
contributions: a lightweight, flexible, and composable model based on
3D Gaussian primitives, driven by tetrahedral cage-based deforma-
tions that enhance body modeling capabilities; and localized motion
conditioning that enables the representation of fine-grained motions
such as facial expressions. D3GA was among the first methods to com-
bine Gaussian primitives with a parametric body model. Additionally,
by leveraging tetrahedral structures, deformations could be more ef-
fectively transferred to the Gaussian kernels, allowing the model to
represent complex transformations such as stretching and rotation of
the encapsulated shape. The usefulness of this approach was further
supported by concurrent works that adopted similar strategies for
scene representation using tetrahedralization [57, 60].

Section 3.4 describes GEM [232], a method that distills neural networks
into a linear and lightweight 3D Gaussian head avatar, represented
as an ensemble of eigenbases. As a demonstration of this representa-
tion, we developed a real-time, cross-person animation system that
drives GEM avatars from single input images using a generalizable
regressor. This approach was designed with efficiency in mind, tar-
geting scenarios where models must be transmitted over the wire.
While high-quality neural representations typically require hundreds
of megabytes, GEM provides a significantly more compact alterna-
tive, orders of magnitude smaller, while still preserving high fidelity
and expression-dependent detail. Finally, we showcased a real-time
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pipeline capable of transferring expressions between different actors.
We believe this representation holds great promise for telepresence
applications and enables deployment on commodity devices, as it
does not require a high-end GPU for inference.

Section 3.5 showcases SynShot [235], a novel generative method based
on a convolutional encoder–decoder architecture trained exclusively
on large-scale synthetic data to produce controllable 3D head avatars.
In addition, it introduces a reconstruction scheme that adapts and
fine-tunes a pretrained generative model using only a few real im-
ages to create a personalized, photorealistic 3D head avatar. Given as
few as three input images, SynShot can accurately project them onto
the VAE’s latent manifold and successfully bridge the domain gap
introduced by training solely on synthetic data. This demonstrates
that synthetic data can be effectively leveraged to build powerful
generative prior models applicable to a wide range of downstream
tasks.

4.2 potential limitations

Each of the introduced methods has its limitations. While the field is
gradually progressing toward photorealistic digital avatars, several
challenges remain unresolved. MICA, for instance, is trained on a rela-
tively small dataset of approximately 2,000 identities, which limits its
diversity and generalization capability. This restricts its effectiveness
in handling a wide range of facial appearances, particularly under
varying lighting or occlusion conditions. INSTA does not model dy-
namically changing hair, resulting in hair quality that lags behind
the fidelity of the facial interior. Improvements in level-of-detail and
temporal consistency are needed to close this gap. Moreover, the un-
derlying 3D Morphable Model (3DMM) used in INSTA lacks teeth
geometry, which affects the quality of the mouth region, especially
when rendering from novel viewpoints. While the method achieves
real-time frame rates for rendering at a resolution of 5122, rendering
speed remains a bottleneck for high-resolution. D3GA is currently
limited to modeling photorealistic avatars for a small number of con-
senting subjects captured using a dense multi-view setup. In addition,
handling self-collisions for loose garments remains an open challenge,
as the sparse control signals fail to convey sufficient information about
high-frequency deformations like wrinkles or self-shadowing. The
PCA-based GEM models limit the ability to perform fine-grained,
localized edits. Incorporating a localized PCA basis could enhance
controllability and allow the synthesis of a broader range of expres-
sions beyond those seen during training. Other challenges include
limited generalization to side-view imagery, leading to unstable ex-
pressions and weak personalization. For each new subject, a new
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model must be learned from multi-view observations. SynShot faces
challenges stemming from the lack of diversity in its synthetic train-
ing dataset. For example, all synthetic subjects share the same teeth
geometry and texture, causing the inverted avatars to rigidly follow
the prior and limiting personalization. The dataset also fails to capture
expression-dependent fine details such as wrinkles, which compro-
mises the realism of the output. Additionally, all scenes were ray-traced
under a single environment map, reducing generalization to diverse
lighting conditions encountered in real-world environments. In sum-
mary, while each method contributes uniquely to the advancement
of digital human modeling, addressing their respective limitations is
crucial for achieving truly generalizable, high-fidelity, and real-time
avatars suitable for practical applications. One of the most significant
current challenges in training large-scale models is the lack of suffi-
ciently large and diverse 3D datasets. In this context, leveraging rich
2D priors emerges as a promising direction to supplement sparse 3D
data, enabling the development of more robust and scalable solutions.

4.3 future work

As mentioned previously, one of the major challenges in the field of
digital humans is the lack of sufficiently large 3D datasets. The most
widely used datasets, such as Nersemble [85], AVA-256 [115], and
FaceScape [230], contain only a few hundred subjects. This scale is
insufficient for training generalizable models capable of representing
the vast diversity of human appearances. In contrast, 2D datasets
consisting of images and videos, such as LAION-5B [160], contain
billions of samples. Future research will need to leverage such large-
scale 2D data, either through hybrid approaches or purely 2D-based
solutions, to meet the diversity requirements of robust digital human
models. The emergence of video diffusion models [5, 14, 64, 100], with
increasing improvements in character consistency and camera control-
lability [59], raises the question of how far these models can be pushed
in terms of realism and generalization. Another important considera-
tion in the growing popularity of Video Foundation Models (VFMs)
is their computational cost during inference. In contrast, 3D models
and neural representations benefit from decades of advancements in
efficient rasterization and ray tracing, enabling low-cost rendering
of individual frames. VFMs, however, still incur significantly higher
inference costs, both in terms of computation and memory, often mak-
ing them impractical for deployment on commodity devices. To fully
harness their potential, further research is needed to improve their
efficiency and reduce their hardware requirements.

Another promising direction for future work is the exploration of
human–scene and human–human interactions, which are essential
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for achieving fully immersive experiences in VR and mixed reality
(MR) environments. Currently, many photorealistic full-body avatar
systems [4, 98, 144, 231] lack awareness of their surroundings. At
the same time, methods for scene understanding [201, 213] and in-
teraction [204, 221] primarily focus on simulating motion and con-
tact dynamics, often in isolation from avatar realism. To enable the
joint simulation of realistic human motion [2, 10, 122, 138] alongside
accurate scene reconstruction and understanding, novel integrated
approaches are required. These approaches should bridge the gap
between photorealistic avatar rendering and physically plausible inter-
actions within complex, dynamic environments. Ultimately, progress
in the virtual simulation of scenes or reconstructed environments
could be leveraged in fields such as robotics, enhancing both mobility
and perception from a software-centric perspective.

This point leads to the ultimate objective of developing agentic artifi-
cial humans (robots). Pearl’s foundational work [130] introduces the
Structural Causal Model (SCM) framework and the do-calculus, which
together form the theoretical backbone of formal causal reasoning in
AI. This trajectory in the evolution of artificial intelligence suggests
that future models will be equipped with agency [89, 149, 158], en-
abling them to actively explore and learn from their environment
in a manner analogous to human behavior. In the context of digital
humans, this implies that, given a suitable environment, such agents
could interact both with their surroundings and with one another,
potentially rendering them indistinguishable from real humans in
terms of behavior, adaptability, and ultimately, appearance.

4.4 conclusions

Digital avatars represent a highly diverse and complex research do-
main. This thesis addresses several key challenges, ranging from facial
reconstruction and tracking to full-body avatar modeling. Each of
these components is essential to the goal of achieving photorealistic
digital humans. However, they also pose significant challenges, as
humans are particularly sensitive to even subtle artifacts. Moreover, in
a world increasingly shaped by artificial intelligence, where progress
continues to accelerate, numerous applications for digital avatars are
rapidly emerging. The popularity of tools such as ChatGPT highlights
the demand for fully embodied conversational agents that are photo-
realistic and perceptually familiar to the human eye. Beyond conversa-
tional AI, the range of applications continues to grow, encompassing
fields such as healthcare, aging, autism support, and storytelling. As
avatars transition from passive renderings to interactive agents, their
role within virtual ecosystems, such as games, simulations, and meta-
verse environments, will become increasingly central. This expanding
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landscape creates a growing need for lifelike, human-centered digital
agents that seamlessly integrate multiple modalities, including speech,
facial expression, gaze, and gesture, all synchronized in real time.
Furthermore, as digital avatars become more lifelike and autonomous,
concerns surrounding identity protection, deepfakes, and the ethical
use of synthesized humans become increasingly important. Ensuring
trust, interpretability, and appropriate safeguards is just as critical
as achieving high visual fidelity. In parallel with these ethical chal-
lenges, the rapid growth of large-scale AI models also raises concerns
about sustainability. Training and deploying large language models
(LLMs) require substantial computational resources, leading to sig-
nificant energy consumption, especially during large-scale inference.
This underscores the importance of developing efficient, modular, and
adaptive avatar systems that balance realism and performance with
computational cost, ultimately enabling broader accessibility and re-
sponsible deployment of this technology. In this thesis, we present
methods that advance the state of the art in both the geometric capture
and photorealistic synthesis of digital humans. Our work addresses
key challenges in scalability, realism, and personalization, contributing
toward the long-term vision of digital avatars that are not only visually
indistinguishable from real humans but also robust and controllable.
While substantial progress has been made, realizing the full potential
of generalizable and interactive digital humans remains an open chal-
lenge, one that will require continued innovation at the intersection of
vision, graphics, and learning.
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Towards Metrical Reconstruction of Human Faces
Wojciech Zielonka, Timo Bolkart, Justus Thies

Published in European Conference on Computer Vision (ECCV), Tel-Aviv,
Israel, 2022.

Abstract

Face reconstruction and tracking are building blocks of numerous
applications in AR/VR, human-machine interaction, as well as medical
applications. Most of these applications rely on a metrically correct
prediction of the shape, especially when the reconstructed subject
is put into a metrical context (i.e., when there is a reference object
of known size). A metrical reconstruction is also needed for any
application that measures distances and dimensions of the subject
(e.g., to virtually fit a glasses frame). State-of-the-art methods for face
reconstruction from a single image are trained on large 2D image
datasets in a self-supervised fashion. However, due to the nature of a
perspective projection, they are not able to reconstruct the actual face
dimensions, and even predicting the average human face outperforms
some of these methods in a metrical sense. To learn the actual shape
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of a face, we argue for a supervised training scheme. Since there exists
no large-scale 3D dataset for this task, we annotated and unified small-
and medium-scale databases. The resulting unified dataset is still a
medium-scale dataset with more than 2k identities, and training purely
on it would lead to overfitting. To this end, we take advantage of a
face recognition network pretrained on a large-scale 2D image dataset,
which provides distinct features for different faces and is robust to
expression, illumination, and camera changes. Using these features,
we train our face shape estimator in a supervised fashion, inheriting
the robustness and generalization of the face recognition network.
Our method, which we call MICA (MetrIC fAce), outperforms the
state-of-the-art reconstruction methods by a large margin, both on
current non-metric benchmarks as well as on our metric benchmarks
(15% and 24% lower average error on NoW, respectively).
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Fig. 1: An RGB image of a subject serves as input to MICA, which predicts a met-
rical reconstruction of the human face. Images from NoW [59], StyleGan2 [38].

Abstract. Face reconstruction and tracking is a building block of nu-
merous applications in AR/VR, human-machine interaction, as well as
medical applications. Most of these applications rely on a metrically cor-
rect prediction of the shape, especially, when the reconstructed subject
is put into a metrical context (i.e., when there is a reference object of
known size). A metrical reconstruction is also needed for any application
that measures distances and dimensions of the subject (e.g., to virtually
fit a glasses frame). State-of-the-art methods for face reconstruction from
a single image are trained on large 2D image datasets in a self-supervised
fashion. However, due to the nature of a perspective projection they are
not able to reconstruct the actual face dimensions, and even predicting
the average human face outperforms some of these methods in a metrical
sense. To learn the actual shape of a face, we argue for a supervised train-
ing scheme. Since there exists no large-scale 3D dataset for this task, we
annotated and unified small- and medium-scale databases. The resulting
unified dataset is still a medium-scale dataset with more than 2k identi-
ties and training purely on it would lead to overfitting. To this end, we
take advantage of a face recognition network pretrained on a large-scale
2D image dataset, which provides distinct features for different faces and
is robust to expression, illumination, and camera changes. Using these
features, we train our face shape estimator in a supervised fashion, inher-
iting the robustness and generalization of the face recognition network.
Our method, which we call MICA (MetrIC fAce), outperforms the state-
of-the-art reconstruction methods by a large margin, both on current
non-metric benchmarks as well as on our metric benchmarks (15% and
24% lower average error on NoW, respectively).
Project website: https://zielon.github.io/mica/
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1 Introduction

Learning to reconstruct 3D content from 2D imagery is an ill-posed inverse
problem [4]. State-of-the-art RGB-based monocular facial reconstruction and
tracking methods [18, 23] are based on self-supervised training, exploiting an
underlying metrical face model which is constructed using a large-scale dataset
of registered 3D scans (e.g., 33000 scans for the FLAME [47] model). However,
when assuming a perspective camera, the scale of the face is ambiguous since
a large face can be modeled by a small face that is close to the camera or a
gigantic face that is far away. Formally, a point x ∈ R3 of the face is projected
to a point p ∈ R2 on the image plane with the projective function π(·) and a
rigid transformation composed of a rotation R ∈ R3×3 and a translation t ∈ R3:

p = π(R · x+ t) = π(s · (R · x+ t)) = π(R · (s · x) + (s · t))).

The perspective projection is invariant to the scaling factor s ∈ R, and thus, if
x is scaled by s, the rigid transformation can be adapted such that the point
still projects onto the same pixel position p by scaling the translation t by s. In
consequence, face reconstruction methods might result in a good 2D alignment
but can fail to reconstruct the metrical 3D surface and the meaningful metrical
location in space. However, a metric 3D reconstruction is needed in any scenario
where the face is put into a metric context. E.g., when the reconstructed human is
inserted into a virtual reality (VR) application or when the reconstructed geome-
try is used for augmented reality (AR) applications (teleconferencing in AR/VR,
virtual try-on, etc.). In these scenarios, the methods mentioned above fail since
they do not reproduce the correct scale and shape of the human face. In the
current literature [25, 59, 83], we also observe that methods use evaluation mea-
surements not done in a metrical space. Specifically, to compare a reconstructed
face to a reference scan, the estimation is aligned to the scan via Procrustes anal-
ysis, including an optimal scaling factor. This scaling factor favors the estimation
methods that are not metrical, and the reported numbers in the publications are
misleading for real-world applications (relative vs. absolute/metrical error). In
contrast, we aim for a metrically correct reconstruction and evaluation that di-
rectly compares the predicted geometry to the reference data without any scaling
applied in a post-processing step which is fundamentally different. As discussed
above, the self-supervised methods in the literature do not aim and cannot re-
construct a metrically correct geometry. However, training these methods in a
supervised fashion is not possible because of the lack of data (no large-scale 3D
dataset is available). Training on a small- or medium-scale 3D dataset will lead
to overfitting of the networks (see study in the supplemental document). To this
end, we propose a hybrid method that can be trained on a medium-scale 3D
dataset, reusing powerful descriptors from a pretrained face recognition network
(trained on a large-scale 2D dataset). Specifically, we propose the usage of ex-
isting 3D datasets like LYHM [16], FaceWarehouse [10], Stirling [26], etc., that
contain RGB imagery and corresponding 3D reconstructions to learn a metrical
reconstruction of the human head. To use these 3D datasets, significant work
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has been invested to unify the 3D data (i.e., to annotate and non-rigidly fit
the FLAME model to the different datasets). This unification provides us with
meshes that all share the FLAME topology. Our method predicts the head geom-
etry in a neutral expression, only given a single RGB image of a human subject
in any pose or expression. To generalize to unseen in the wild images, we use a
state-of-the-art face recognition network [17] that provides a feature descriptor
for our geometry-estimating network. This recognition network is robust to head
poses, different facial expressions, occlusions, illumination changes, and different
focal lengths, thus, being ideal for our task (see Figure 3). Based on this feature,
we predict the geometry of the face with neutral expression within the face space
spanned by FLAME [47], effectively disentangling shape and expression. As an
application, we demonstrate that our metrical face reconstruction estimator can
be integrated in a new analysis-by-synthesis face tracking framework which re-
moves the requirement of an identity initialization phase [70]. Given the metrical
face shape estimation, the face tracker is able to predict the face motion in a
metrical space.

In summary, we have the following contributions:

– a dataset of 3D face reference data for about 2300 subjects, built by unifying
existing small- and medium-scale datasets under common FLAME topology.

– a metrical face shape predictor – MICA– which is invariant to expression,
pose and illumination, by exploiting generalized identity features from a face
recognition network and supervised learning.

– a hybrid face tracker that is based on our (learned) metrical reconstruction
of the face shape and an optimization-based facial expression tracking.

– a metrical evaluation protocol and benchmark, including a discussion on the
current evaluation practise.

2 Related Work

Reconstructing human faces and heads from monocular RGB, RGB-D, or multi-
view data is a well-explored field at the intersection of computer vision and com-
puter graphics. Zollhöfer et al. [85] provide an extensive review of reconstruction
methods, focusing on optimization-based techniques that follow the principle of
analysis-by-synthesis. Primarily, the approaches that are based on monocular
inputs are based on a prior of face shape and appearance [6, 7, 27, 28, 40, 66–
71, 77, 78]. The seminal work of Blanz et al. [8] introduced such a 3D morphable
model (3DMM), which represents the shape and appearance of a human in a
compressed, low-dimensional, PCA-based space (which can be interpreted as a
decoder with a single linear layer). There is a large corpus of different morphable
models [21], but the majority of reconstruction methods use either the Basel
Face Model [8, 52] or the Flame head model [47]. Besides using these models for
an analysis-by-synthesis approach, there is a series of learned regression-based
methods. An overview of these methods is given by Morales et al. [50]. In the fol-
lowing, we will discuss the most relevant related work for monocular RGB-based
reconstruction methods.
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Optimization-based Reconstruction of Human Faces. Along with the introduc-
tion of a 3D morphable model for faces, Blanz et al. [8] proposed an optimization-
based reconstruction method that is based on the principle of analysis-by-
synthesis. While they used a sparse sampling scheme to optimize the color re-
production, Thies et al. [69, 70] introduced a dense color term considering the
entire face region that is represented by a morphable model using differentiable
rendering. This method has been adapted for avatar digitization from a single
image [36] including hair, is used to reconstruct high-fidelity facial reflectance
and geometry from a single images [79], for reconstruction and animation of
entire upper bodies [71], or avatars with dynamic textures [51]. Recently, these
optimization-based methods are combined with learnable components such as
surface offsets or view-dependent surface radiance fields [32]. In addition to a
photometric reconstruction objective, additional terms based on dense corre-
spondence [35] or normal [1, 32] estimations of neural network can be employed.
Optimization-based methods are also used as a building block for neural render-
ing methods such as deep video portraits [40], deferred neural rendering [68], or
neural voice puppetry [67]. Note that differentiable rendering is not only used
in neural rendering frameworks but is also a key component for self-supervised
learning of regression-based reconstruction methods covered in the following.

Regression-based Reconstruction of Human Faces. Learning-based face recon-
struction methods can be categorized into supervised and self-supervised ap-
proaches. A series of methods are based on synthetic renderings of human faces
to perform a supervised training of a regressor that predicts the parameters of a
3D morphable model [20, 41, 56, 57]. Genova et al. [31] propose a 3DMM param-
eter regression technique that is based on synthetic renderings (where ground
truth parameters are available) and real images (where multi-view identity losses
are applied). It uses FaceNet [60] to extract features for the 3DMM regression
task. Tran et al. [72] and Chang et al. [11] (ExpNet) directly regress 3DMM
parameters using a CNN trained on fitted 3DMM data. Tu et al. [75] propose
a dual training pass for images with and without 3DMM fittings. Jackson et
al. [37] propose a model-free approach that reconstructs a voxel-based repre-
sentation of the human face and is trained on paired 2D image and 3D scan
data. PRN [24] is trained on ’in-the-wild’ images with fitted 3DMM reconstruc-
tions [84]. It is not restricted to a 3DMM model space and predicts a position
map in the UV-space of a template mesh. Instead of working in UV-space, Wei
et al. [76] propose to use graph convolutions to regress the coordinates of the
vertices. MoFA [65] is a network trained to regress the 3DMM parameters in a
self-supervised fashion. As a supervision signal, it uses the dense photometric
losses of Face2Face [70]. Within this framework, Tewari et al. proposed to refine
the identity shape and appearance [64] as well as the expression basis [63] of a
linear 3DMM. In a similar setup, one can also train a non-linear 3DMM [74]
or personalized models [12]. RingNet [59] regresses 3DMM parameters and is
trained on 2D images using losses on the reproduction of 2D landmarks and
shape consistency (different images of the same subject) and shape inconsis-
tency (images of different subjects) losses. DECA [23] extends RingNet with
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expression dependent offset predictions in UV space. It uses dense photomet-
ric losses to train the 3DMM parameter regression and the offset prediction
network. This separation of a coarse 3DMM model and a detailed bump map
has been introduced by Tran et al. [73]. Chen et al. [13] use a hybrid train-
ing composed of self-supervised and supervised training based on renderings to
predict texture and displacement maps. Deng et al. [18] train a 3DMM param-
eter regressor based on multi-image consistency losses and ’hybrid-level’ losses
(photometric reconstruction loss with skin attention masks, and a perception-
level loss based on FaceNet [60]). On the NoW challenge [59], DECA [23] and
the method of Deng et al. [18] show on-par state-of-the-art results. Similar to
DECA’s offset prediction, there are GAN-based methods that predict detailed
color maps [29, 30] or skin properties [44, 45, 58, 79] (e.g., albedo, reflectance,
normals) in UV-space of a 3DMM-based face reconstruction. In contrast to these
methods, we are interested in reconstructing a metrical 3D representation of a
human face and not fine-scale details. Self-supervised methods suffer from the
depth-scale ambiguity (the face scale, translation away from the camera, and the
perspective projection are ambiguous) and, thus, predict a wrongly scaled face,
even though 3DMM models are by construction in a metrical space. We rely on
a strong supervision signal to learn the metrical reconstruction of a face using
high-quality 3D scan datasets which we unified. In combination with an identity
encoder [17] trained on in-the-wild 2D data, including occlusions, different illu-
mination, poses, and expressions, we achieve robust geometry estimations that
significantly outperform state-of-the-art methods.

3 Metrical Face Shape Prediction

Based on a single input RGB image I, MICA aims to predict a metrical shape of
a human face in a neutral expression. To this end, we leverage both ’in-the-wild’
2D data as well as metric 3D data to train a deep neural network, as shown
in Figure 2. We employ a state-of-the-art face recognition network [17] which is
trained on ’in-the-wild’ data to achieve a robust prediction of an identity code,
which is interpreted by a geometry decoder.

Identity Encoder. As an identity encoder, we leverage the ArcFace [17] archi-
tecture which is pretrained on Glint360K [2]. This ResNet100-based network is
trained on 2D image data using an additive angular margin loss to obtain highly
discriminative features for face recognition. It is invariant to illumination, ex-
pression, rotation, occlusion, and camera parameters which is ideal for a robust
shape prediction. We extend the ArcFace architecture by a small mapping net-
work M that maps the ArcFace features to our latent space, which can then be
interpreted by our geometry decoder:

z = M(ArcFace(I)),

where z ∈ R300. Our mapping networkM consists of three fully-connected linear
hidden layers with ReLU activation and the final linear output layer.
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Fig. 2: We propose a method for metrical human face shape estimation from a
single image which exploits a supervised training scheme based on a mixture
of different 2D,2D/3D and 3D datasets. This estimation can be used for facial
expression tracking using analysis-by-synthesis which optimizes for the camera
intrinsics, as well as the per-frame illumination, facial expression and pose.

Geometry Decoder. There are essentially two types of geometry decoders used in
the literature, model-free and model-based. Throughout the project of this paper,
we conducted experiments on both types and found that both perform similarly
on the evaluation benchmarks. Since a 3DMM model efficiently represents the
face space, we focus on a model-based decoder. Specifically, we use FLAME [47]
as a geometry decoder, which consists of a single linear layer:

G3DMM (z) = B · z +A,

where A ∈ R3N is the geometry of the average human face and B ∈ R3N×300

contains the principal components of the 3DMM and N = 5023.

Supervised Learning. The networks described above are trained using paired
2D/3D data from existing, unified datasets D (see Section 5). We fix large por-
tions of the pre-trained ArcFace network during the training and refine the last
3 ResNet blocks. Note that ArcFace is trained on a much larger amount of iden-
tities, therefore, refining more hidden layers results in worse predictions due to
overfitting. We found that using the last 3 ResNet blocks gives the best gener-
alization (see supplemental document). The training loss is:

L =
∑

(I,G)∈D
|κmask(G3DMM (M(ArcFace(I)))− G)|, (1)

where G is the ground truth mesh and κmask is a region dependent weight (the
face region has weight 150.0, the back of the head 1.0, and eyes with ears 0.01).
We use AdamW [49] for optimization with fixed learning rate η = 1e−5 and
weight decay λ = 2e−4. We select the best performing model based on the
validation set loss using the Florence dataset [3]. The model was trained for
160k steps on Nvidia Tesla V100.
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4 Face Tracking

Based on our shape estimate, we demonstrate optimization-based face tracking
on monocular RGB input sequences. To model the non-rigid deformations of the
face, we use the linear expression basis vectors and the linear blendskinning of
the FLAME [47] model, and use a linear albedo model [22] to reproduce the
appearance of a subject in conjunction with a Lambertian material assumption
and a light model based on spherical harmonics. We adapt the analysis-by-
synthesis scheme of Thies et al. [70]. Instead of using a multi-frame model-based
bundling technique to estimate the identity of a subject, we use our one-shot
shape identity predictor. We initialize the albedo and spherical harmonics based
on the same first frame using the energy:

E(ϕ) = wdenseEdense(ϕ) + wlmkElmk(ϕ) + wregEreg(ϕ), (2)

where ϕ is the vector of unknown parameters we are optimizing for. The energy
terms Edense(ϕ) and Ereg(ϕ) measure the dense color reproduction of the face
(ℓ1-norm) and the deviation from the neutral pose respectively. The sparse land-
mark term Elmk(ϕ) measures the reproduction of 2D landmark positions (based
on Google’s mediapipe [33, 39] and Face Alignment [9]). The weights wdense,
wlmk and wreg balance the influence of each sub-objectives on the final loss. In
the first frame vector ϕ contains the 3DMM parameters for albedo, expression,
and rigid pose, as well as the spherical harmonic coefficients (3 bands) that are
used to represent the environmental illumination [54]. After initialization, the
albedo parameters are fixed and unchanged throughout the sequence tracking.

Optimization. We optimize the objective function Equation (2) using Adam [42]
in PyTorch. While recent soft-rasterizers [48, 55] are popular, we rely on a sam-
pling based scheme as introduced by Thies et al. [70] to implement the differ-
entiable rendering for the photo-metric reproduction error Edense(ϕ). Specifi-
cally, we use a classical rasterizer to render the surface of the current estima-
tion. The rasterized surface points that survive the depth test are considered
as the set of visible surface points V for which we compute the energy term
Edense(ϕ) =

∑
i∈V |I(π(R · pi(ϕ) + t)) − ci(ϕ)| where pi and ci being the i-th

vertex and color of the reconstructed model, and I the RGB input image.

5 Dataset Unification

In the past, methods and their training scheme were limited by the availability of
3D scan datasets of human faces. While several small and medium-scale datasets
are available, they are in different formats and do not share the same topology.
To this end, we unified the available datasets such that they can be used as
a supervision signal for face reconstruction from 2D images. Specifically, we
register the FLAME [47] head model to the provided scan data. In an initial step,
we fit the model to landmarks and optimize for the FLAME parameters based on
an iterative closest point (ICP) scheme [5]. We further jointly optimize FLAME’s
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Table 1: Overview of our unified datasets. The used datasets vary in the capture
modality and the capture protocol. Here, we list the number of subject, the
minimum number of images per subjects, and whether the dataset includes facial
expressions. In total our dataset contains 2315 subjects with FLAME topology.

Dataset #Subj. #Min. Img. Expr.

Stirling [26] � 133 8 ✓

D3DFACS [15] � 10 videos ✓

Florence 2D/3D [3] � 53 videos ✓

BU-3DFE [81] � 100 83 ✓

LYHM [16] � 1211 2 ✗

FaceWarehouse [10] � 150 119 ✓

FRGC [53] � 531 7 ✓

BP4D+ [82] � 127 videos ✓

model parameters, and refine the fitting with a non-rigid deformation regularized
by FLAME, similar to Li and Bolkart et al. [47]. In Table 1, we list the datasets
that we unified for this project. We note that the datasets vary in the capturing
modality and capturing script (with and without facial expressions, with and
without hair caps, indoor and outdoor imagery, still images, and videos), which
is suitable for generalization. The datasets are recorded in different regions of
the world and are often biased towards ethnicity. Thus, combining other datasets
results in a more diverse data pool. In the supplemental document, we show
an ablation on the different datasets. Upon agreement of the different dataset
owners, we will share our unified dataset, i.e., for each subject one registered
mesh with neutral expression in FLAME topology. Note that in addition to
the datasets listed in Table 1, we analyzed the FaceScape dataset [80]. While it
provides a large set of 3D reconstructions (∼ 17k), which would be ideal for our
training, the reconstructions are not done in a metrical space. Specifically, the
data has been captured in an uncalibrated setup and faces are normalized by the
eye distance, which has not been detailed in their paper (instead, they mention
sub-millimeter reconstruction accuracy which is not valid). This is a fundamental
flaw of this dataset, and also questions their reconstruction benchmark [83].

6 Results

Our experiments mainly focus on the metrical reconstruction of a human face
from in the wild images. In the supplemental document, we show results for the
sequential tracking of facial motions using our metrical reconstruction as ini-
tialization. The following experiments are conducted with the original models of
the respective publications including their reconstructions submitted to the given
benchmarks. Note that these models are trained on their large-scale datasets,
training them on our medium-scale 3D dataset would lead to overfitting.
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Table 2: Quantitative evaluation of the face shape estimation on the NoW Chal-
lenge [59]. Note that we list two different evaluations: the non-metrical evaluation
from the original NoW challenge and our new metrical evaluation (including a
cumulative error plot on the left). The original NoW challenge cannot be con-
sidered metrical since Procrustes analysis is used to align the reconstructions to
the corresponding reference meshes, including scaling. We list all methods from
the original benchmark and additionally show the performance of the average
human face of FLAME [47] as a reference (first row).

NoW-Metric Challenge Non-Metrical [59] Metrical (mm)

Method Median Mean Std Median Mean Std

Average Face (FLAME [47]) 1.21 1.53 1.31 1.49 1.92 1.68
3DMM-CNN [72] 1.84 2.33 2.05 3.91 4.84 4.02
PRNet [24] 1.50 1.98 1.88 – – –
Deng et al [18] (TensorFlow) 1.23 1.54 1.29 2.26 2.90 2.51
Deng et al [18] (PyTorch) 1.11 1.41 1.21 1.62 2.21 2.08
RingNet [59] 1.21 1.53 1.31 1.50 1.98 1.77
3DDFA-V2 [34] 1.23 1.57 1.39 1.53 2.06 1.95
MGCNet [62] 1.31 1.87 2.63 1.70 2.47 3.02
UMDFA [43] 1.52 1.89 1.57 2.31 2.97 2.57
Dib et al. [19] 1.26 1.57 1.31 1.59 2.12 1.93
DECA [23] 1.09 1.38 1.18 1.35 1.80 1.64
FOCUS [46] 1.04 1.30 1.10 1.41 1.85 1.70
Ours 0.90 1.11 0.92 1.08 1.37 1.17

6.1 Face Shape Estimation

In recent publications, face shape estimation is evaluated on datasets where
reference scans of the subjects are available. The NoW Challenge [59] and the
benchmark of Feng et al. [25] which is based on Stirling meshes [26] are used
in the state-of-the-art methods [18, 23, 59]. We conduct several studies on these
benchmarks and propose different evaluation protocols.

Non-Metrical Benchmark. The established evaluation methods on these
datasets are based on an optimal scaling step, i.e., to align the estimation to
the reference scan, they optimize for a rigid alignment and an additional scaling
factor which results in a non-metric/relative error. This scaling compensates for
shape mispredictions, e.g., the mean error evaluated on the NoW Challenge for
the average FLAME mesh (Table 2) drops from 1.92mm to 1.53mm because
of the applied scale optimization. This is an improvement of around 20% which
has nothing to do with the reconstruction quality and, thus, creates a misleading
benchmark score where methods appear better than they are. Nevertheless, we
evaluate our method on these benchmarks and significantly outperform all state-
of-the-art methods as can be seen in Tables 2 and 4 (‘Non-Metrical’ column).

Metrical Benchmark. Since for a variety of applications, actual metrical re-
constructions are required, we argue for a new evaluation scheme that uses a
purely rigid alignment, i.e., without scale optimization (see Figure 5). The er-
ror is calculated using an Euclidean distance between each scan vertex and the
closest point on the mesh surface. This new evaluation scheme enables a com-
parison of methods based on metrical quantities (see Tables 2 and 4) and, thus,
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Table 3: Quantitative evaluation of the face shape estimation on the Stirling
Reconstruction Benchmark [25] using the NoW protocol [59]. We list two differ-
ent evaluations: the non-metric evaluation from the original benchmark and the
metric evaluation. Note that for this experiment, we exclude the Stirling dataset
from our training set.

Stirling (NoW Protocol)
Non-Metrical Metrical (mm)

Median Mean Std Median Mean Std
LQ HQ LQ HQ LQ HQ LQ HQ LQ HQ LQ HQ

Average Face (FLAME [47]) 1.23 1.22 1.56 1.55 1.38 1.35 1.44 1.40 1.84 1.79 1.64 1.57
RingNet [59] 1.17 1.15 1.49 1.46 1.31 1.27 1.37 1.33 1.77 1.72 1.60 1.54
3DDFA-V2 [34] 1.26 1.20 1.63 1.55 1.52 1.45 1.49 1.38 1.93 1.80 1.78 1.68
Deng et al. [18] (TensorFlow) 1.22 1.13 1.57 1.43 1.40 1.25 1.85 1.81 2.41 2.29 2.16 1.97
Deng et al. [18] (PyTorch) 1.12 0.99 1.44 1.27 1.31 1.15 1.47 1.31 1.93 1.71 1.77 1.57
DECA [23] 1.09 1.03 1.39 1.32 1.26 1.18 1.32 1.22 1.71 1.58 1.54 1.42
Ours w/o. Stirling 0.96 0.92 1.22 1.16 1.11 1.04 1.15 1.06 1.46 1.35 1.30 1.20

Table 4: Quantitative evaluation of the face shape estimation on the Stirling Re-
construction Benchmark [25]. We list two different evaluations: the non-metric
evaluation from the original benchmark and the metric evaluation. This bench-
mark is based on an alignment protocol that only relies on reference landmarks
and, thus, is very noisy and dependent on the landmark reference selection (in our
evaluation, we use the landmark correspondences provided by the FLAME [47]
model). We use the image file list from [59] to compute the scores (i.e., excluding
images where a face is not detectable). Note that for this experiment, we exclude
the Stirling dataset from our training set.

Stirling/ESRC Benchmark
Non-Metrical [25] Metrical (mm)

Median Mean Std Median Mean Std
LQ HQ LQ HQ LQ HQ LQ HQ LQ HQ LQ HQ

Average Face (FLAME [47]) 1.58 1.62 2.06 2.08 1.82 1.83 1.70 1.62 2.19 2.09 1.96 1.85
RingNet [59] 1.56 1.60 2.01 2.05 1.75 1.76 1.67 1.64 2.16 2.09 1.90 1.81
3DDFA-V2 [34] 1.58 1.49 2.03 1.90 1.74 1.63 1.70 1.56 2.16 1.98 1.88 1.70
Deng et al. [18] (TensorFlow) 1.56 1.41 2.02 1.84 1.77 1.63 2.13 2.14 2.71 2.65 2.33 2.12
Deng et al. [18] (PyTorch) 1.51 1.29 1.95 1.64 1.71 1.39 1.78 1.54 2.28 1.97 1.97 1.68
DECA [23] 1.40 1.32 1.81 1.72 1.59 1.50 1.56 1.45 2.03 1.87 1.81 1.64
Ours w/o. Stirling 1.26 1.22 1.62 1.55 1.41 1.34 1.36 1.26 1.73 1.60 1.48 1.37

is fundamentally different from the previous evaluation schemes. In addition,
the benchmark of Feng et al. [25] is based on the alignment using sparse facial
(hand-selected) landmarks. Our experiments showed that this scheme is highly
dependent on the selection of these markers and results in inconsistent evaluation
results. In our listed results, we use the marker correspondences that come with
the FLAME model [47]. To get a more reliable evaluation scheme, we evaluate
the benchmark of Feng et al. using the dense iterative closest point (ICP) tech-
nique from the NoW challenge, see Table 3. On all metrics, our proposed method
significantly improves the reconstruction accuracy. Note that some methods are
even performing worse than the mean face [47].
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Fig. 3: Qualitative results on NoW Challenge [59] to show the invariance of our
method to changes in illumination, expression, occlusion, rotation, and perspec-
tive distortion in comparison to other methods.

Qualitative Results. In Figure 3, we show qualitative results to analyze the
stability of the face shape prediction of a subject across different expressions,
head rotation, occlusions, or perspective distortion. As can be seen, our method
is more persistent compared to others, especially, in comparison to Deng et al.
[18] where shape predictions vary the most. Figure 4 depicts the challenging
scenario of reconstructing toddlers from single images. Instead of predicting a
small face for a child, the state of the art methods are predicting faces of adults.
In contrast, MICA predicts the shape of a child with a correct scale.

In Figure 6 reconstructions for randomly sampled identities from the Vox-
Celeb2 [14] dataset are shown. Some of the baselines, especially, RingNet [59],
exhibits strong bias towards the mean human face. In contrast, our method is
able to not only predict better overall shape but also to reconstruct challeng-
ing regions like nose or chin, even though the training dataset contains a much
smaller identity and ethnicity pool. Note that while the reconstructions of the
baseline methods look good under the projection, they are not metric as shown
in Tables 2 and 4.
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Fig. 4: Current methods are not predicting metrical faces, which becomes visible
when displaying them in a metrical space and not in their image spaces. To
illustrate we render the prediction of the faces of toddlers in a common metrical
space using the same projection. State-of-the-art approaches trained in a self-
supervised fashion like DECA [23] or weakly-supervised like FOCUS [46] scale
the face of an adult to fit the observation in the image space, thus, the prediction
in 3D is non-metrical. In contrast, our reconstruction method is able to recover
the physiognomy of the toddlers. Input images are generated by StyleGan2 [38].

Fig. 5: Established evaluation benchmarks like [25, 59] are based on a non-
metrical error metric (top-row). We propose a new evaluation protocol which
measures reconstruction errors in a metrical space (bottom row) (c.f. Table 2).
Image from the NoW [59] validation set.
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6.2 Limitations

Our method is not designed to predict shape and expressions in one forward pass,
instead, we reconstruct the expression separately using an optimization-based
tracking method. However, this optimization-based tracking leads to temporally
coherent results, as can be seen in the suppl. video. In contrast to DECA [23]
or Deng et al. [18], the focus of our method is the reconstruction of a metrical
3D model, reconstructing high-frequent detail on top of our prediction is an
interesting future direction. Our method fails, when the used face detector [61]
does not recognize a face in the input.

7 Discussion & Conclusion

A metrical reconstruction is key for any application that requires the measure-
ment of distances and dimensions. It is essential for the composition of recon-
structed humans and scenes where objects of known size are in, thus, it is espe-
cially important for virtual reality and augmented reality applications. However,
we show that recent methods and evaluation schemes are not designed for this
task. While the established benchmarks report numbers in millimeters, they are
computed with an optimal scale to align the prediction and the reference. We
strongly argue against this practice, since it is misleading and the errors are not
absolute metrical measurements. To this end, we propose a simple, yet fundamen-
tal adjustment of the benchmarks to enable metrical evaluations. Specifically, we
remove the optimal scaling, and only allow rigid alignment of the prediction with
the reference shape. As a stepping stone towards metrical reconstructions, we
unified existing small- and medium-scale datasets of paired 2D/3D data. This
allows us to establish 3D supervised losses in our novel shape prediction frame-
work. While our data collection is still comparably small (around 2k identities),
we designed MICA that uses features from a face recognition network pretrained
on a large-scale 2D image dataset to generalize to in-the-wild image data. We
validated our approach in several experiments and show state-of-the-art results
on our newly introduced metrical benchmarks as well as on the established scale-
invariant benchmarks. We hope that this work inspires researchers to concentrate
on metrical face reconstruction.
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Fig. 6: Qualitative comparison on randomly sampled images from the VoxCeleb2
[14] dataset. Our method is able to capture face shape with intricate details like
nose and chin, while being metrical plausible (c.f., Tables 2 and 4).
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[64] Tewari, A., Zollhöfer, M., Garrido, P., Bernard, F., Kim, H., Pérez, P.,
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Abstract

We present Instant Volumetric Head Avatars (INSTA), a novel ap-
proach for reconstructing photo-realistic digital avatars instanta-
neously. INSTA models a dynamic neural radiance field based on
neural graphics primitives embedded around a parametric face model.
Our pipeline is trained on a single monocular RGB portrait video that
observes the subject under different expressions and views. While
state-of-the-art methods take up to several days to train an avatar,
our method can reconstruct a digital avatar in less than 10 minutes
on modern GPU hardware, which is orders of magnitude faster than
previous solutions. In addition, it allows for the interactive rendering
of novel poses and expressions. By leveraging the geometry prior of
the underlying parametric face model, we demonstrate that INSTA
extrapolates to unseen poses. In quantitative and qualitative stud-
ies on various subjects, INSTA outperforms state-of-the-art methods
regarding rendering quality and training time.
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Figure 1. Given a short monocular RGB video, our method instantaneously optimizes a deformable neural radiance field to synthesize a
photo-realistic animatable 3D neural head avatar. The neural radiance field is embedded in a multi-resolution grid around a 3D face model
which guides the deformations. The resulting head avatar can be viewed under novel views and animated at interactive frame rates.

Abstract

We present Instant Volumetric Head Avatars (INSTA),
a novel approach for reconstructing photo-realistic digi-
tal avatars instantaneously. INSTA models a dynamic neu-
ral radiance field based on neural graphics primitives em-
bedded around a parametric face model. Our pipeline is
trained on a single monocular RGB portrait video that ob-
serves the subject under different expressions and views.
While state-of-the-art methods take up to several days to
train an avatar, our method can reconstruct a digital avatar
in less than 10 minutes on modern GPU hardware, which is
orders of magnitude faster than previous solutions. In ad-
dition, it allows for the interactive rendering of novel poses
and expressions. By leveraging the geometry prior of the
underlying parametric face model, we demonstrate that IN-
STA extrapolates to unseen poses. In quantitative and quali-
tative studies on various subjects, INSTA outperforms state-
of-the-art methods regarding rendering quality and training
time. Project website: https://zielon.github.io/insta/

1. Introduction

For immersive telepresence in AR or VR, we aim for
digital humans (avatars) that mimic the motions and facial
expressions of the actual subjects participating in a meet-
ing. Besides the motion, these avatars should reflect the
human’s shape and appearance. Instead of prerecorded, old
avatars, we aim to instantaneously reconstruct the subject’s
look to capture the actual appearance during a meeting. To
this end, we propose Instant Volumetric Head Avatars (IN-
STA), which enables the reconstruction of an avatar within
a few minutes (∼10 min) and can be driven at interactive
frame rates. For easy accessibility, we rely on commodity
hardware to train and capture the avatar. Specifically, we
use a single RGB camera to record the input video. State-
of-the-art methods that use similar input data to reconstruct
a human avatar require a relatively long time to train, rang-
ing from around one day [20] to almost a week [16,58]. Our
approach uses dynamic neural radiance fields [16] based on
neural graphics primitives [38], which are embedded around
a parametric face model [25], allowing low training times
and fast evaluation. In contrast to existing methods, we use
a metrical face reconstruction [59] to ensure that the avatar

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
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has metrical dimensions such that it can be viewed in an
AR/VR scenario where objects of known size are present.
We employ a canonical space where the dynamic neural
radiance field is constructed. Leveraging the motion esti-
mation employing the parametric face model FLAME [25],
we establish a deformation field around the surface using a
bounding volume hierarchy (BVH) [12]. Using this defor-
mation field, we map points from the deformed space into
the canonical space, where we evaluate the neural radiance
field. As the surface deformation of the FLAME model does
not include details like wrinkles or the mouth interior, we
condition the neural radiance field by the facial expression
parameters. To improve the extrapolation to novel views,
we further leverage the FLAME-based face reconstruction
to provide a geometric prior in terms of rendered depth
maps during training of the NeRF [36]. In comparison to
state-of-the-art methods like NeRFace [16], IMAvatar [58],
or Neural Head Avatars (NHA) [20], our method achieves a
higher rendering quality while being significantly faster to
train and evaluate. We quantify this improvement in a series
of experiments, including an ablation study on our method.

In summary, we present Instant Volumetric Head Avatars
with the following contributions:

• a surface-embedded dynamic neural radiance field
based on neural graphics primitives, which allows us
to reconstruct metrical avatars in a few minutes instead
of hours or days,

• and a 3DMM-driven geometry regularization of the
dynamic density field to improve pose extrapolation,
an important aspect of AR/VR applications.

2. Related Work
INSTA is reconstructing animatable digital human

avatars from monocular video data based on 3D neural
rendering [48]. Current solutions are using implicit rep-
resentations [8, 16, 29, 36, 40, 41] optimized via differen-
tiable volumetric rendering, or are based on explicit mod-
els [5, 7, 20, 49] for instance, triangle or tetrahedral meshes
using differentiable rasterization [10, 22, 30, 33]. For a con-
cise overview of neural rendering methods and face recon-
struction, we point the reader to the state-of-the-art reports
by Zollhöfer et al. [60], and Tewari et al. [47, 48].
Static Neural Radiance Fields. Mildenhall et al. [36] and
its many follow-up works [3,4,28,35,39,44,45,51,56], syn-
thesize novel views of a complex static scene using differ-
entiable volumetric rendering. Many methods suffer from a
long training time (1-5 days). To this end, different accel-
eration methods have been proposed to improve the train-
ing time. Yu et al. [15] achieved 100× speedup by using
a sparse voxel grid storing density and spherical harmon-
ics coefficients at each node. The final color is the compo-

sition of tri-linearly interpolated values of each voxel in-
tersecting with the ray. TensorRF [9] factorizes the 4D
NeRF scene into multiple compact low-rank tensor com-
ponents achieving high performance and compactness. The
coordinate-based MLP is replaced with a voxel grid of fea-
tures, and the final color is its vector-matrix outer product.
Müller et al. [38] introduced a new computer graphics prim-
itive in the form of tiny MLPs which benefit from a multi-
resolution hashing encoding. The key idea is similar to Yu
et al. [15]. The space is divided into an independent multi-
level grid with feature vectors at the vertices of the grid. A
spatial hash function [46] is used to store the voxel grid ef-
ficiently. Each point sampled on the ray is encoded by the
interpolated feature vector of the corresponding grid level
and passed to a tiny neural network to synthesize the final
color. Our method uses this efficient architecture to model
the face in a canonical space.

Some of the static NeRF methods [2, 13, 44, 52] use ad-
ditional depth maps to improve alignment and quality for
static scenes. The depth priors help guide the ray sampling
and better estimate the transmittance, resulting in improved
geometry and color recovery. While we are working with
RGB images only, our method leverages the geometry prior
of the 3DMM to guide the depth estimation during train-
ing, which results in an improved extrapolation ability w.r.t.
view changes.

Deformable Neural Radiance Fields. After the intro-
duction of NeRF [36] for static scenes, a natural research
direction was to generalize it to dynamic, time-varying
ones [14, 26, 40, 41, 43, 50]. The reconstruction problem is
divided into two different spaces, the deformed scene, and
the canonical space, with a neural network as the mapper
between them. For human body modeling, a series of ap-
proaches have been proposed that leverage the kinematic
chain of the SMPL [32] body model to condition the map-
ping function. Peng et al. [42] proposed to learn blend
weights to estimate the linear blend skinning-based warp-
ing field between canonical and deformed space based on
the body skeleton. Similarly, Neural Actor [29] uses a 3D
body mesh proxy to learn pose-dependent geometric defor-
mation and view-dependent appearance effects defined in
the canonical space. Lombardi et al. [31], which defines
surface-aligned neural volumes to improve the rendering
speed. Garbin et al. [18] build a tetrahedral deformation
graph around a radiance field based on the underlying mesh
on which the deformations are defined, effectively trans-
forming sampled points according to the current cage state.
Xu et al. [53] propose surface-aligned neural radiance fields
by projecting points in space to the surface of the body
mesh. Our idea is based on a similar principle. However,
instead of projecting points onto the mesh surface, we con-
struct a 3D space around the head and deform points based
on the deformation defined by the nearest triangles.
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Figure 2. Overview. INSTA follows differentiable volumetric optimization introduced in [36, 38]. For each sampled point p ∈ R4 in
deformed space (in homogeneous coordinates), we are computing the nearest neighbor triangle on the mesh Tdef ∈ M i and its topological
corresponding twin in the canonical space Tcanon ∈ M canon. The deformation gradient of the triangle from deformed space to canonical
space F̂ ∈ R4×4 defines the deformation field. Specifically, p is transformed to the canonical space by p′ = F̂ ·p. After canonicalization,
the point is encoded using a multi-resolution hashing [38]. This feature is passed to fully fused multi-layer perceptrons [37] with additional
conditioning on the facial expressions Ei and the encoded view direction d.

In contrast to modeling the deformation explicitly, Gafni
et al. [16] implicitly model the facial expressions by con-
ditioning the NeRF MLP with the global expression code
obtained from 3DMM tracking [49] and by optimizing per
latent frame codes to increase the network capacity for over-
fitting. In our approach, we leverage the idea of dynamic
neural radiance fields to improve the mouth region’s ren-
dering, which is not represented by the face model mo-
tion prior. Inspired by 3DMMs, IMAvatar [58] learns the
subject-specific implicit representation of texture together
with expression blendshapes and blend skinning weights.
They optimize an implicit surface by incorporating ray
marching from Yariv et al. [54] with root-finding of the oc-
cupancy function [11] to locate canonical correspondence
of deformed points. However, we found the training time-
consuming (∼5 days) and unstable (can diverge). In a con-
current work, Gao et al. [17] create personalized blend-
shapes using neural graphics primitives, where for each of
the blendshapes, a multi-resolution grid [38] is trained.

3. Instant Deformable Neural Radiance Field

Our goal is to create instant digital avatars which can
be learned in a few minutes and rendered in interactive
time. For this purpose, we are using a geometry-guided
deformable neural radiance field embedded into a multi-
resolution hashing grid [38], exploiting differentiable vol-
umetric rendering [36] (see Fig. 2).

For a given monocular video consisting of images I =
{Ii} along with optimized intrinsic camera parameters K ∈
R3×3, tracked FLAME [25] meshes M = {Mi} with cor-
responding facial expression coefficients E = {Ei} and
poses P = {Pi}, our goal is to build a controllable head

avatar represented by a neural radiance field. To this end,
we employ a canonical space where the neural radiance field
is constructed. To render specific facial expressions using
volumetric rendering, we canonicalize the samples on a ray
from the deformed space to query the radiance field in the
canonical space.

Volumetric Rendering. We take advantage of the recent
advances in interactive NeRF optimization and use neural
graphic primitives [38] to represent the radiance field. The
representation of the avatar is optimized using the differen-
tiable volumetric rendering equation:

Ĉ =

∫ D

0

T (t) · σ(t) · c(t) dt + T (D) · cbg, (1)

where T (tn) = exp
(
−
∫ tn
0

σ(t) dt
)

is the transmittance
which indicates the probability of a ray traveling from
[0, tn) without interaction with any other particles [36], σ(t)
is the density and c(t) is the radiance at position pt. Note
that the sample points pt are canonicalized to access the ac-
tual radiance field. Following NeRFace [16], we condition
every sample pt on the ray with the 3DMM facial expres-
sion code Ei ∈ R16 of video frame i. Please note that in
contrast to NeRFace [16] and IMAvatar [58], we do not use
additional per-frame learnable codes. The viewing vector
v ∈ R3 is encoded using spherical harmonics projection
on four basis functions [1, 38] resulting in the final viewing
vector encoding d ∈ R16 which is concatenated with den-
sity MLP output. While the viewing conditioning is applied
on the entire avatar, the conditioning on facial expressions
is bounded to the dynamically changing mouth region and
is set to a constant vector Ei = 1 for the other regions.
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Canonicalization. We define a mapping function Φ(p,Mi)
that projects a point p ∈ R4 from the time-varying
deformed space (where the volumetric rendering is per-
formed) to the canonical space. The mapping function
leverages the time-varying surface approximation Mi and
a predefined mesh in canonical space M canon. We em-
ploy a nearest triangle search in deformed space to com-
pute the deformation gradient F ∈ R4×4 which is used to
map point p to the canonical counterpart p′. The deforma-
tion gradient F is computed via the known Frenet frames
of the deformed triangle Tdef ∈ Mi and the canonical tri-
angle Tcanon ∈ M canon. Specifically, we compute the ro-
tation matrices {Rcanon,Rdef} ∈ R3×3 based on the cor-
responding tangent, bitangent, and normal vectors of a tri-
angle. With the translations {tcanon, tdef} ∈ R3 defined
by a vertex of the triangle, they form the Frenet coordinate
system frames Lcanon and Ldef ∈ R4×4:

Ldef =

[
Rdef tdef
0T 1

]
,

Lcanon =

[
Rcanon tcanon
0T 1

]
.

(2)

To account for any potential triangle size change between
deformed and canonical spaces, we compute an isotropic
scaling factor λ ∈ R via the relative surface area change of
the given triangle w.r.t. its canonical twin λ =

adef

acanon
. The

deformation gradient F is defined as:

F = Lcanon · Λ ·L−1
def ,

Λ =

[
λI 0
0T 1

]
.

(3)

To avoid transformation discontinuity, which arises from
the local coordinate system of each triangle, we addition-
ally perform exponentially weighted averaging of the trans-
formations of the adjacent faces of the triangle’s edges:

F̂ =
1∑

f∈A ωf
·
∑

f∈A

ωfF f , (4)

where ωf = exp (−β||cf − p||2), β = 4 and A is the set
of adjacent faces to T (including T with β = 1) with corre-
sponding centroids cf . Please note that all vertex positions
are defined in meters (FLAME metrical space).

To achieve interactive rendering as well as instanta-
neous optimization of the neural radiance field, we lever-
age a classical bounding volume hierarchy (BVH) [12]
to significantly increase the nearest triangle search speed
for the sampled points pt on the ray. Note that methods
like IMAvatar [58] perform computation-heavy root-finding
procedures to calculate surface points iteratively [11]. Our
method builds a BVH based on the corresponding deformed
mesh Mi of frame i to establish the mapping function to

the canonical mesh. Our BVH is implemented on GPU to
utilize massively parallel nearest triangle search [23]. To
alleviate the triangle search for highly tessellated FLAME
regions, we simplified the eyeballs and the eye region [19].
Moreover, an additional set of triangles in the mouth region
is used to serve as a deformation proxy (see sup. mat.).

3.1. Training Objectives

The optimization of the neural radiance field is based on
a color reproduction objective and a geometry prior based
on the 3DMM. Following NeRF [36], we redefine the volu-
metric rendering Equation (1) with piece-wise constant den-
sity and color, and rewrite it in terms of alpha-compositing:

Ĉ(tN+1) =
N∑

n=1

Tn · αn · cn, (5)

where Tn =
∏N−1

n=1 (1 − αn) weight αn is defined as
αn ≡ 1 − exp (−σnδn) and δn is a step size equal

√
3

1024 .
To measure the photometric error, we use a Huber loss [21]
with ρ = 0.1:

Lcolor =

{
1
2 (C − Ĉ)2 if

∣∣∣(C − Ĉ
∣∣∣ < ρ

ρ((C − Ĉ)− 1
2ρ) otherwise

(6)

We enforce a depth loss to leverage the geometry prior
of the reconstructed face based on the 3DMM FLAME.
Specifically, we rasterize the depth of the tracking mesh
Mi and apply an L1 distance between this map and the ray
termination of the volumetric rendering. As the FLAME
model does not contain details like hair, we restrict the ge-
ometry prior to the face region:

Lgeom =
∑

r

|1face{(z(r)− ẑ(r))}|, (7)

where ẑ =
∑N

n=1 Tn · αn · tn, and tn is the current sample
position, and 1face{} is a segmentation indicator function
which enables the loss for the face region. The 1face func-
tion uses face parsing information [55] to decide a given
pixel membership. The total loss L is defined as:

L =
∑

r

λcolor(r)Lcolor(r) + λgeomLgeom(r), (8)

where λgeom = 1.25 controls the influence of the geome-
try prior and λcolor(r) weights the color loss contribution
based on a face parsing mask. Specifically, we weight the
color loss higher for the mouth region with λcolor = 40 and
λcolor = 1 otherwise.

We implemented our animatable dynamic radiance field
using the Nvidia NGP C++ framework [37]. We use two
fully fused MLPs [37], each with 64 neurons, for color and
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density predictions. The density MLP outputs feature val-
ues vector σ ∈ R16 where the first value is the log-space
density. The vector σ is later concatenated with the en-
coded viewing vector d to be the input of the color net-
work. For optimization, we used Adam [24] with an expo-
nential moving average on the weights and fixed learning
rate η = 2.5e−3. In our experiments, we train the net-
work for 32k optimization steps. We randomly sample 1700
frames from the whole dataset during the training and load
them into the processing buffer. Every 1500 steps, we re-
peat the procedure and resample the dataset.

4. Dataset
Our method takes a single video as input to generate the

volumetric avatar of the depicted subject. For our exper-
iments, we recorded multiple actors with a Nikon Z6 II
Camera as well as used sequences from Youtube, result-
ing in a set of twelve actors. For the in-house recordings,
we captured around 2-3min of monocular RGB Full HD
videos, which later were cropped, sub-sampled to 25fps,
and resized to 5122 resolution. We additionally use back-
ground foreground segmentation using robust matting [27]
and an off-the-shelf face parsing framework [55] for image
segmentation and clothes removal.

Dataset Tracking Generation. An essential part of this
project is temporally stable face tracking of the monoc-
ular input data. To this end, we use the analysis-by-
synthesis-based face tracker from MICA [59], based on
Face2Face [49] using a sampling-based differentiable ren-
dering. We refer to the original paper [49] for more details.
We extend the optimization with two extra blendshapes for
eyelids and iris tracking using Mediapipe [34]. In contrast
to MICA, we also optimize for FLAME shape parameters,
with regularization towards MICA shape prediction instead
of the average face shape as in Face2Face [49]. Note that
for our prototype, we implemented the tracking in PyTorch,
which is significantly slower than the original Face2Face
implementation, which can track faces in real-time.

5. Results
In this section, we evaluate the quality of the synthesized

digital human avatars generated by our method INSTA in
comparison to state-of-the-art. For this purpose, we use the
test sequences from our dataset, which consist of the last
350 frames of each video.

5.1. Image Quality Evaluation

To evaluate our method in terms of the image quality
and novel view extrapolation, we make a comparison to
NeRFace [16], IMAvatar [58], and Neural Head Avatars
(NHA) [20]. For this comparison, we use the original im-

Figure 3. Qualitative comparison for novel view extrapolation. As
can be seen, our method can better handle image synthesis un-
der novel poses. NHA [20] suffers from degenerated geometry
with many artifacts at the ear region. NeRFace [16] lacks high-
frequency details for eyes and teeth, and IMAvatar [58] shows sil-
houette artifacts at gracing angles.

plementations of the authors. Note that for IMAvatar, we
use the most recent version of the author’s code, which con-
tains additional semantic information for mouth interior and
FLAME geometry supervision which is different from the
original paper. Figure 4 depicts qualitative results evalu-
ated on the test sequences. To evaluate the image quality of
the results quantitatively, we use several pixel-wise metrics;
mean squared error, SSIM, PSNR, and the perceptual met-
ric LPIPS [57] (see Table 1). Note that IMAvatar is trained
at a resolution of 2562 due to its computational complexity;
for the comparison, we upsample the results to 5122.

All methods produce sharp and photo-realistic images
which are hard to distinguish from the ground truth. How-
ever, the most noticeable artifacts, especially for the ear re-
gions, were generated by NHA. Moreover, IMAvatar, for
some of the videos, had problems with convergence and
stability, leading to diverging optimization and premature
termination of the training. Compared to these methods,
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Figure 4. Qualitative comparisons show that our method produces high-quality facial avatars which beat the state-of-the-art methods in
terms of image quality (e.g., capturing fine details like lips and teeth) while being significantly faster to obtain.
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Figure 5. Embedding the neural radiance field around the deformable face model allows us to model dynamic sequences in contrast to the
static radiance field of NGP [38]. The expression conditioning and face-parsing-based weighting leads to sharper teeth reconstructions.

Method L2 ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Time ↓
NHA [20] 0.0022 27.71 0.95 0.04 0.63
IMAvatar [58] 0.0023 27.62 0.94 0.06 12.34
NeRFace [16] 0.0018 29.28 0.95 0.07 9.68
Ours 0.0018 28.97 0.95 0.05 0.05

Table 1. Average photometric errors over 19 videos from our
dataset, NHA, IMAvatar, and NeRFace datasets (see Fig. 4). The
average rendering time of a single frame in seconds is denoted as
Time in the rightmost column. Our method is on par with NeRFace
of Gafni et al. w.r.t. the pixel-wise error metrics. Additionally, our
approach achieves low perceptual error in comparison to all meth-
ods while being significantly faster to train and evaluate.

our approach can achieve the best image quality while be-
ing significantly faster to train (see sup. mat.).

Extrapolation to novel views is an essential aspect of
3D digital avatars that are used in AR or VR applications.
In Figure 3, we depict a viewpoint extrapolation compari-
son with the baseline methods. We can observe that NeR-
Face [16] produces blurry results in the area of eyes and
teeth. IMAvatar [58] exhibits artifacts at gracing angles at
the silhouette, and NHA [20] suffers from degenerated ge-
ometry with strong artifacts at the ears. In contrast to these
methods, our method can robustly generate photo-realistic
images under novel poses and achieves high visual quality,
especially in the skin and mouth region.

5.2. Ablation Studies

We conducted a series of ablation studies to analyze the
different components of our pipeline. Specifically, we are
interested in the influence of localized expression condition-
ing for teeth quality (Figure 5), the effect of the geometric
prior (Figure 8), especially for the novel view synthesis, and
the importance of the deformation field (Figure 6).

Deformation Field. Figure 6 shows the impact of the defor-
mation field and the conditioning on the quality of the ren-
derings. We conducted two experiments where we used a)
a global conditioning instead of the local one and b) global
conditioning with per-frame learnable codes and without

the deformation field (similar to NeRFace). As can be seen,
local conditioning and the mesh-based deformation field
helps to avoid overfitting to the short training sequences.

Figure 6. Ablation study w.r.t. the conditioning and deformation
field. From left to right: ground truth, ours, ours with global con-
ditioning, and ours without deformation field but with per-frame
learnable codes (NeRFace).

Geometric Prior. We leverage the geometric prior of the
3DMM FLAME [25] to regularize the depth estimations of
our volumetric rendering method. During training, we ren-
der depth maps of the per-frame 3DMM reconstructions and
measure a loss between the estimated ray termination and
the depth of the rendered face model. In Figure 8, we show
an ablation study w.r.t. this geometric prior. The generated
digital avatar is shown from an unseen profile view, an ex-
treme extrapolation from the training data which observed
views in a range of ±40◦. Using the additional geometric
prior improves the stability and quality of the results.

Expression Conditioning. Most publicly available
3DMMs [6,25] do not explicitly model teeth. However, this
region is especially challenging for the reconstruction of 3D
facial avatars due to highly dynamic lips, which can occlude
the teeth depending on the given expressions. To compen-
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Figure 7. INSTA allows training personalized volumetric avatars from RGB videos within a couple of seconds. Already after 30 seconds
of optimization, we achieve good results where the geometry and appearance match the input. To improve the reconstruction of high-
frequency details like teeth, the method needs to train approximately 10 min.

Figure 8. The geometric prior of the 3DMM helps for extrapola-
tion to extreme novel views, in this case, 90◦.

sate for the missing geometry, we condition this region on
FLAME expression coefficients. In Figure 5, we show that
using this additional information helps to improve the syn-
thesis of the mouth interior. Furthermore, we demonstrate
that a higher color term weight on the mouth region (Equa-
tion (8)) improves the visual quality.

6. Discussion

While our method INSTA shows better quality and speed
compared to state-of-the-art RGB-video-based avatar gen-
eration techniques, there are still several challenges that
need to be addressed in future work. Our model handles
the dynamically changing facial expressions but does not
capture dynamically changing hairs. Thus, the hair quality
is not on par with the face interior and still needs improve-
ments in the level of detail. Furthermore, the used 3DMM
does not model teeth geometry. A better approximation
of the mouth region would increase the viewpoint extrap-
olation with improved quality of teeth. While our method
achieves real-time frame rates for rendering at a resolution
of 5122, the rendering speed needs to be improved to en-
able high-quality video conferences in AR or VR, especially
when a higher resolution is required. With additional engi-
neering, the training process of our method could be moved
to a background process that would continuously refine our
canonical avatar after an initial warm-up stage. For exam-
ple, regions initially not visible could be captured during the
conversation, and the avatar would be updated accordingly.

7. Limitations

An important quality factor of our method is face track-
ing, as misalignments of the geometry and the images will
be propagated to the final avatar. Another limiting aspect
is the mouth interior quality due to the lack of geometry in
that region, as can be seen in Figure 9.

Figure 9. Failure cases: (a) and (b) exhibits outline artifacts at
the chin and hair which stem from geometry misalignment of the
tracker, (c) extreme expressions can cause artifacts in the mouth
region, and (d) extrapolation of expressions can lead to artifacts.

8. Conclusion

Instant Volumetric Head Avatars (INSTA) is a novel ap-
proach that instantaneously optimizes geometry-guided 3D
digital avatars. Our method takes a monocular RGB video
as input and optimizes a subject’s dynamic neural radiance
field in less than 10 minutes using neural graphics primi-
tives embedded around a 3DMM. In comparisons and ab-
lation studies, we demonstrate the capabilities of INSTA,
which enable us to instantaneously create avatars that re-
flect reality and not a prerecorded appearance that might
deviate from the current look of the person. We believe this
paradigm change to adaptable online avatars is a stepping
stone toward immersive telepresence applications.
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Abstract

We present Drivable 3D Gaussian Avatars (D3GA), a multi-layered
3D controllable model for human bodies that utilizes 3D Gaussian
primitives embedded into tetrahedral cages. The advantage of using
cages compared to commonly employed linear blend skinning (LBS)
is that primitives like 3D Gaussians are naturally re-oriented and their
kernels are stretched via the deformation gradients of the encapsulat-
ing tetrahedron. Additional offsets are modeled for the tetrahedron
vertices, effectively decoupling the low-dimensional driving poses
from the extensive set of primitives to be rendered. This separation
is achieved through the localized influence of each tetrahedron on
3D Gaussians, resulting in improved optimization. Using the cage-
based deformation model, we introduce a compositional pipeline that
decomposes an avatar into layers, such as garments, hands, or faces,
improving the modeling of phenomena like garment sliding. These
parts can be conditioned on different driving signals, such as key-
points for facial expressions or joint-angle vectors for garments and
the body. Our experiments on two multi-view datasets with varied
body shapes, clothes, and motions show higher-quality results. They
surpass PSNR and SSIM metrics of other SOTA methods using the
same data while offering greater flexibility and compactness.
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Figure 1. Given a multi-view video input, D3GA is trained to create light, drivable, photorealistic 3D human avatars. These avatars are
constructed as a composition of 3D Gaussians encapsulated within tetrahedral cages. The Gaussians undergo transformation and stretching
influenced by these cages, are colored using an MLP, and are rasterized into splats. By representing the drivable human as a collection of
3D Gaussian layers, we gain the ability to decompose and manipulate the avatar as needed.

Abstract
We present Drivable 3D Gaussian Avatars (D3GA), a

multi-layered 3D controllable model for human bodies that
utilizes 3D Gaussian primitives embedded into tetrahedral
cages. The advantage of using cages compared to com-
monly employed linear blend skinning (LBS) is that prim-
itives like 3D Gaussians are naturally re-oriented and their
kernels are stretched via the deformation gradients of the
encapsulating tetrahedron. Additional offsets are modeled
for the tetrahedron vertices, effectively decoupling the low-
dimensional driving poses from the extensive set of primi-
tives to be rendered. This separation is achieved through the
localized influence of each tetrahedron on 3D Gaussians,
resulting in improved optimization. Using the cage-based
deformation model, we introduce a compositional pipeline
that decomposes an avatar into layers, such as garments,
hands, or faces, improving the modeling of phenomena like
garment sliding. These parts can be conditioned on dif-
ferent driving signals, such as keypoints for facial expres-

∗Work done while Wojciech Zielonka was an intern at the Codec
Avatars Lab in Pittsburgh, PA, USA

sions or joint-angle vectors for garments and the body. Our
experiments on two multi-view datasets with varied body
shapes, clothes, and motions show higher-quality results.
They surpass PSNR and SSIM metrics of other SOTA meth-
ods using the same data while offering greater flexibility
and compactness.

1. Introduction

Developing drivable, photorealistic human avatars is crucial
for better long-distance telecommunication that provides an
immersive experience to the users. The motion and defor-
mations across various segments of a complex avatar’s body
are influenced by distinct signals, such as facial expres-
sions and body movements. This complexity poses chal-
lenges for accurate modeling using a single layer. Multi-
layered avatars become essential to represent these different
regions, ensuring proper motion and visual fidelity. Simi-
larly, garments present challenges such as sliding, necessi-
tating separate modeling of each clothing piece.

Mixture of Volumetric Primitives (MVP) [30] started a



successful line of hybrid implementations, where volumet-
ric primitives are embedded on the surface of the tracked
mesh. This representation, despite excellent results, strug-
gles when the provided mesh is not precise or lacks details,
ultimately producing artifacts and misaligning the primi-
tives. Similar CNN-based architectures [1, 27, 29, 30, 52],
do not allow for easy garment decomposition and assume
a fixed amount of 3D primitives since the CNN size has
to be set for the training. Furthermore, numerous meth-
ods [1, 24, 30, 57] lack the capability of layered condition-
ing specific to different body parts. For example, they may
not support using keypoints for the face or motion vectors
for clothing like t-shirts. This is an important aspect of a
holistic system that, ultimately, needs to capture speech,
face, gestures, and garment motion. State-of-the-art driv-
able avatars [52, 68] require dense input signals like RGB-
D images or even multi-view camera setups at test time,
which might not be suitable for low-bandwidth connec-
tions in telepresence applications. Finally, drivable NeRFs
and 3DGS avatars typically rely on LBS to transform sam-
ples between canonical and observation spaces. However,
LBS is limited by the low degree of freedom of the model,
whereas cages can handle more complex non-linear motion
and offer additional physical properties (e.g., stretching).

We designed our method to use a minimal set of inputs
and still be competitive with the ones that require more in-
formation to train an avatar. D3GA models digital humans
using volumetric primitives represented as 3D Gaussians
embedded into a tetrahedral cage which is naturally de-
scribed by phenomenons like stretching, rotation, and scal-
ing. Accordingly, instead of LBS, our method builds on a
classic deformation model for transforming volumes [40].
Specifically, by recasting cages from the canonical space
into a deformed one, the 3D Gaussian covariance matrices
undergo the encapsulating tetrahedral deformation transfor-
mation. Recent advancements in incorporating physics into
Gaussians [8, 70] show further promise in the context of
cage usage for garment modeling by capitalizing on [4, 35].
Also, cages decouple the representation resolution (related
to the amount of Gaussians) from the degrees of freedom
present in the model ultimately allowing an effective reg-
ularization of the deformations in contrast to LBS which
depends on the global bone transformations only. In addi-
tion, we employ a compositional structure based on separate
body, face, and garment cages, allowing us to model those
parts independently, including localized conditioning based
on different driving signals (e.g., keypoints).

We train person-specific models on nine high-quality
multi-view sequences with a wide range of body shapes,
motion, and clothing (not limited to tight-fitting), which
later can be driven with new poses from any subject.

In summary, we present Drivable 3D Gaussian Avatars
(D3GA) with the following contributions:

• A light, flexible, and composable model based on 3D
Gaussian primitives driven by tetrahedral cage-based de-
formations which improve their body modeling proper-
ties.

• Localized motion conditioning which enables for instance
facial expressions.

2. Related Work

D3GA reconstructs controllable digital full-body avatars us-
ing multi-view video and joint angle motion by combining
3D Gaussian Splatting (3DGS) [19] with cage-based de-
formations [12, 14, 17]. Current methods for controllable
avatars rely on dynamic Neural Radiance Fields (NeRF)
[38, 43, 44], point-based [34, 71, 77], or hybrid represen-
tations [1, 6, 30, 79], which are either slow to render or fail
to correctly disentangle garments from the body, leading to
poor generalization to new poses. Recently, incorporating
3DGS into dynamic scenarios has opened new research av-
enues [27, 49, 69, 72, 76]. For a thorough overview, we re-
fer readers to state-of-the-art reports on digital avatars and
neural rendering [60, 61, 82].

Dynamic Neural Radiance Fields NeRF [39] is a popular
appearance model for human avatars, representing scenes
volumetrically with density and color information using an
MLP. Images are rendered via ray casting and volumetric
integration of sample points [18]. Many methods have suc-
cessfully applied NeRF to dynamic scenes [9, 26, 43, 44,
47, 65, 71, 79], achieving high-quality results. However,
most methods treat avatars as a single layer [24, 38, 45, 55–
57, 78], which complicates modeling phenomena like slid-
ing or loose garments. Methods like [6, 7] address this
using a hybrid representation, combining explicit geome-
try from SMPL[31] with implicit dynamic NeRF. Despite
impressive garment reconstruction, these methods struggle
with novel pose prediction. TECA [74] extends SCARF to
a generative framework, enabling prompt-based generation
of NeRF-based accessories and hairstyles.

Point-based Rendering Before 3DGS, many methods used
point-based rendering [34, 57, 77] or sphere splatting [23],
with optimizable positions and sizes. NPC by Su et al. [57]
defines a point-based body model for avatar representation,
but requires lengthy nearest neighbor searches during train-
ing (12 hours vs. 30 minutes for our model), making it
impractical for dense multi-view datasets. Ma et al. [34]
represent garments as a pose-dependent function mapping
SMPL points [31] to the clothing space. This is improved
in [48] with a neural deformation field, but both models only
address geometry, not appearance. Zheng et al. [77] repre-
sent the upper part of an avatar as a point cloud, grown dur-
ing optimization and rasterized using a differentiable ren-
derer [63]. While achieving photorealistic local results, the
avatars suffer from artifacts like holes.



Cage-based Deformations Cages[40] are commonly used
for geometry modeling and animation, serving as sparse
proxies to control all interior points, enabling efficient de-
formation by manipulating only cage nodes. Yifan et
al. [64] introduced neural cages for detail-preserving shape
deformation, where a neural network rigs the source object
into the target via a proxy. Garbin et al. [10] extended dy-
namic NeRF with tetrahedron cages to unposed ray sam-
ples based on tetrahedron intersections. This method is
real-time, high-quality, and controllable, but limited to ob-
jects with local deformations like heads, and not suitable
for highly articulate objects like full-body avatars. Peng et
al. used a cage to deform a radiance field in CageNeRF
[46]. While their low-resolution cages can be applied to
full-body avatars, they fail to model detailed features like
faces or complex deformations.

Time-conditioned Methods Playback methods [2, 5, 13,
25, 66, 73] represent a scene as a time-conditioned func-
tion that cannot be arbitrarily controlled, allowing only for
a novel viewpoint synthesis while traversing the time axis.
Yang et al. [73] extended the representation of 3DGS [19]
into 4DGS, effectively incorporating time into the primi-
tive representation. Wu et al. [66] combine Gaussians with
4D neural voxels, inspired by HexPlane [2], which achieves
real-time rendering and novel-view synthesis. However,
these solutions fall into a different class of algorithms com-
pared to pose-conditioned drivable avatars, which is our
goal.

Dynamic Gaussian Splatting D3GA is based on 3D Gaus-
sian Splatting (3DGS) [19], a recent alternative to NeRF
for modeling neural scenes. Due to its real-time capabili-
ties and high-quality results, 3DGS has inspired numerous
follow-up papers [8, 15, 33, 49, 69, 70, 72, 76, 80, 81] in ar-
eas such as physics simulation, hair modeling, head avatars,
and fluid dynamics. Several works [27, 41, 53] recently in-
troduced convolutional networks to regress Gaussian maps.
Despite achieving high-quality results, fixed convolutional
architectures do not allow for local conditioning or adjust-
ing the number of Gaussians during training. These meth-
ods also use up to 23 times more parameters, causing the
model size to reach almost 1 GiB. In contrast, our pipeline
remains lightweight and flexible, offering garment decom-
position and localized conditioning. Finally, using CNNs
can slow down the pipeline to around 10 FPS [27], whereas
our method remains real-time.

3. Method

D3GA is built on 3DGS extended by a neural representation
and tetrahedral cages to model the color and geometry of
each dynamic part of the avatar, respectively. In the follow-
ing, we introduce the formulation of 3D Gaussian Splatting
and give a detailed description of our method.

3.1. 3D Gaussian Splatting

3D Gaussian Splatting (3DGS) [19] is designed for real-
time novel view synthesis in multi-view static scenes. Their
rendering primitives are scaled 3D Gaussians [22, 63] with
a 3D covariance matrix Σ and mean µ:

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ). (1)

To splat the Gaussians, Zwicker et al. [83] define the pro-
jection of 3D Gaussians onto the image plane as:

Σ′ = AWΣWTAT , (2)

where Σ′ is a covariance matrix in 2D space, W is the view
transformation, and A is the Jacobian of the affine approx-
imation of the projective transformation. During optimiza-
tion, enforcing the positive semi-definiteness of the covari-
ance matrix Σ is challenging. To avoid this, Kerbl et al.
[19] use an equivalent formulation of a 3D Gaussian as a
3D ellipsoid parameterized with a scale S and rotation R:

Σ = RSSTRT . (3)

3DGS uses spherical harmonics [51] to model the view-
dependent color of each Gaussian. In practice, appearance
is modeled with an optimizable 48 elements vector repre-
senting four bands of spherical harmonics.

3.2. Body Cage Creation

Body Garment

Figure 3. D3GA uses a tetrahedral
mesh for deformation modeling.

To deform 3D Gaus-
sians, we utilize
tetrahedron cage-
based deformations
as a coarse proxy
for the body, face,
and individual gar-
ments. Unlike a
triangle, which is
two-dimensional,
a tetrahedron is

a polyhedron with four triangular faces (A, B, C, D),
providing a three-dimensional structure. The volume of a
tetrahedron can be calculated using the scalar triple product
of vectors, which enables precise control and deformation
of the enclosed 3D Gaussians. The volume V is given by:

V =
1

6
|AB · (AC × AD)| (4)

where AB, AC, AD are edges of tetraherdon. This property
allows us to compute the deformation gradient similarly to
Sumner et al. [58] and transfer it to the Gaussian covariance
matrix (Equation 7), see Supp. Mat, for more details.

To create a cage per garment, we segment all images of
a single time instance using an EfficientNet [59] backbone



Figure 2. Overview. D3GA uses 3D pose ϕϕϕ, face embedding κκκ, viewpoint dk and canonical cage v (as well as auto-decoded color
features hi) to generate the final render C̄ and auxiliary segmentation render P̄. The inputs in the left are processed through three networks
(ΨMLP, ΠMLP, ΓMLP) per avatar part to generate cage displacements ∆v, Gaussians deformations bi, qi, si and color/oppacity ci, oi
respectively. After cage deformations transform canonical Gaussians, they are rasterized into the final images according to Eq. 10.

with PointRend [21] refinement, trained on a corpus of sim-
ilar multi-view captures. The per-image 2D segmentation
masks are projected onto a body mesh M̂ to obtain per-
triangle labels (body, upper, lower). To get the mesh M̂, we
fit a low-resolution LBS model to a single 3D scan of the
subject and then fit such model to the segmented frame by
minimizing the distance to the 3D keypoints, extracted with
an EfficientNet trained on similar captures. We transform
the body mesh into canonical space with LBS and divide it
into body part templates Mk. The garment meshes are addi-
tionally inflated by 1-3 cm along the vertex normals. After-
ward, we run a voxelization of the meshes and subsequently
extract the mesh using the marching cubes algorithm [32].
After that, we use TetGen [54] to turn the unposed meshes
Mk into tetrahedral meshes Tk. Consequently, cages for
garments are hollow, containing only their outer layer, while
the body cage is solid (Figure 3). The face cage is composed
of the body tetrahedra which contains triangles defined as
the face on the LBS template. The cage nodes are deformed
according to LBS weights transferred from the closest ver-
tex in Mk.

3.3. Cage Deformation Transfer

While classic cage methods typically deform the volume
according to complex weight definitions [14, 16, 17], us-
ing linear weights works well in practice when cage cells
are small, making it easier to integrate into an end-to-end
training system. Specifically, we define vij as the vertices
of tetrahedron i in canonical space, any point x inside this
tetrahedron can be defined by its barycentric coordinates bj :

x =
4∑

j=1

bjvij . (5)

Each Gaussian 3D mean µ = x is obtained as a linear com-
bination of learnable barycentric coordinates bj and tetra-
hedron vertices vij . When the tetrahedra are transformed
to posed space according to v̂ij = LBS(vij ,ϕϕϕ,wij), where
ϕϕϕ is the pose and wij are the blendweights, the same lin-
ear relation holds x̂ =

∑4
j=1 bjv̂ij . To leverage the cage

volume properties (rotation, sheer, and scaling), we use the
deformation gradient [58]:

JiEi = Êi, (6)

Ji = ÊiE
−1
i , (7)

where Êi ∈ R3×3 and Ei ∈ R3×3 contain three edges from
tetrahedron i defined in deformed and canonical spaces, re-
spectively. The gradient Ji is used to transform the kernel
of each Gaussian i (Eq 8). See Supp. mat for more details.

3.4. Drivable Gaussian Avatars

We initialize a fixed number of Gaussians, whose 3D means
µ are sampled on the surface of M̂. However, we are
not limited to the fixed amount of Gaussians allowing for
cloning or densification if needed. The rotation of each
Gaussian is initialized so that the first two axes are aligned
with the triangle surface and the third one with the normal:
this is a good approximation for a smooth surface. The scale
is initialized uniformly across a heuristic range depending
on inter-point distances as in [19]. We assign each sampled
position x to the intersecting tetrahedron and compute its
barycentric coordinates b ∈ R4. To deform the tetrahedron
volume, we incorporate the deformation gradient J defined
in Eq. 7 into the Gaussian covariance matrix from Eq. 3.

This is an important step as the deformation gradient J
encapsulates many phenomena that we want to model, for
instance, rotation, stretching, and sheering. To correctly
transfer the deformation to 3D Gaussian primitives, we ap-
ply it to the covariance matrix Σ, effectively modeling the
3DGS ellipsoids depending on the shape deformation from
the canonical space into deformed one. Thus, the final co-
variance matrix passed to the rasterizer is denoted as:

Σ̂ = JiΣJT
i , (8)

where Ji is the deformation gradient of the tetrahedron con-
taining the 3D mean of the Gaussian with covariance Σ.
This way, we transfer the deformation into the Gaussians,
improving modeling phenomena like garment stretching.



Each part of the avatar (the garment, body, or
face) is controlled by a separate GaussianNet GNet =
{ΓMLP,ΠMLP,ΨMLP} which is defined as a set of small spe-
cialized multi-layer perceptrons (MLP) parametrized as:

ΨMLP : {ϕϕϕ, encpos(v)} → ∆v,

ΠMLP : {ϕϕϕ,bi,qi, si} → {∆bi,∆si,∆qi},
ΓMLP : {ϕϕϕ, encview(dk),hi, fj} → {ci, oi}.

(9)

All the networks take joint anglesϕϕϕ (or face encodingsκκκ for
the face networks) as inputs, in addition to network-specific
conditioning. The cage node correction network ΨMLP takes
positional encodings [39] for all canonical vertices to trans-
form them into offsets of the cage node positions similar to
SMPL [31] pose-correctives. To adapt our representation
further to the pose, the Gaussian correction network ΠMLP
takes the canonical Gaussian parameters (barycentric coor-
dinates bi ∈ R4, rotation qi ∈ R4 and scale si ∈ R3) to
predict corrections of those same parameters. These two
networks are necessary to capture high-frequency details
outside the parametric transformation.

The shading network ΓMLP transforms encoded view di-
rection and initial color into final color and opacity, ci, oi.
Unlike 3DGS, we use a pose-dependent color representa-
tion to model self-shadows and wrinkles in garments. The
view angle is projected onto the first four spherical har-
monics bands encpos(·), while the initial color is an auto-
decoded feature vector hi [42]. Additionally, the face re-
gion utilizes face embeddings κκκ as input instead of pose
ϕϕϕ. This adaptability stems from our model’s composability
and holds the potential for extension to other regions, such
as hair, shoes, or hands. A small auxiliary MLP regresses κκκ
based on 150 3D keypoints k normalized by their training
mean and standard deviations. This effectively enables us
to model facial expressions.

Finally, we also add an embedding vector with the time
frame of the current sample [36]. This allows D3GA to ex-
plain properties that cannot be modeled (e.g., cloth dynam-
ics) from our input, effectively avoiding excessive blur due
to averaging residuals. During testing, the average training
embedding is used.

3.5. Training Objectives

As in 3DGS [19], we define the color C̄ of pixel (u, v):

C̄u,v =
∑

i∈N
ciαi

i−1∏

j=1

(1− αi), (10)

where ci is the color predicted by ΓMLP, which replaces the
spherical harmonics in 3DGS. αi is computed as the product
of the Gaussian density in Eq. 1 with covariance matrix Σ′

from Eq. 2 and the learned per-point opacity oi predicted
by ΓMLP. The sum is computed over set N , the Gaussians

with spatial support on (u, v). The primary loss in D3GA is
a weighted sum of three different color losses applied to the
estimated image C̄ and the ground truth RGB image C:

LColor = (1− ω)L1 + ωLD-SSIM + ζLVGG, (11)

where ω = 0.2, ζ = 0.005 (after 400k iterations steps and
zero otherwise), LD-SSIM is a structural dissimilarity loss,
and LVGG is the perceptual VGG loss.

To encourage correct garment separation, we introduce a
garment loss. Since each Gaussian i is statically assigned to
a part, we define pi as a constant-per-part color and conse-
quently render P̄ by replacing ci by pi in Eq. 10. Then, we
compute the L1 norm between predicted parts P̄ and ground
truth segmentations P, LGarment = L1(P̄,P). Moreover,
we are using the Neo-Hookean loss based on Macklin et al.
[35] to enforce the regularization of the predicted tetrahedra
for the regions with low supervision signal:

LNeo =
1

N

N∑

i=0

λ

2
(det(Ji)− 1)

2
+

µ

2

(
tr(JT

i Ji)− 3
)
,

(12)
where Ji denotes the deformation gradient between a
canonical and a deformed tetrahedron (Eq. 7), N is the total
number of tetrahedrons, and λ and µ are the Lamé parame-
ters [35]. The overall loss is defined as:

L = νLColor + νLGarment + τLNeo, (13)

where ν = 10 and τ = 0.005 balance the different losses.
We implemented D3GA based on the differentiable

3DGS renderer [19]. The networks ΠMLP,ΨMLP,ΓMLP have
three hidden layers with 128 neurons and ReLU activation
functions. In our experiments, we train the networks for
700k (Ours) and 400k (ActorsHQ) steps with a multi-step
scheduler with a decay rate of 0.33, a batch size of one, and
using the Adam optimizer [20] with a learning rate set to
5e − 4. We ran all experiments on a single Nvidia V100
GPU with 1024 × 667 images. When ground truth poses
are not available, as in the case of ActorsHQ [13], we addi-
tionally refine poses regressed from keypoints during avatar
training and during the test time, and optionally projected
them onto PCA basis computed from the training set.

4. Dataset
Our dataset comprises nine subjects performing various mo-
tions, observed by 200 cameras. We use 12,000 frames for
training (at 10 FPS) and 1,500 for testing (at 30 FPS). Im-
ages were captured at a resolution of 4096×2668 in a multi-
view studio with synchronized cameras and downsampled
to 1024× 667 to reduce computational cost. We utilize 2D
segmentation masks, RGB images, keypoints, and 3D joint
angles for training, as well as a single registered mesh to
create our template M̂. Of the nine subjects, data for four
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Figure 4. Qualitative comparisons show that D3GA models facial expressions and garments better than other SOTA approaches. Especially
regions with loose garments like skirts or sweatpants.

is publicly available through the Goliath-4 dataset release
[37].

5. Results
We evaluate and benchmark our method w.r.t. five state-of-
the-art multiview-based solutions [1, 11, 27, 30, 50]. We
compare D3GA to the mesh-based full-body avatar meth-
ods BodyDecoder (BD) [1] and MVP-based avatars [30, 52]
evaluated on our dataset.

Additionally, we evaluated D3GA on the ActorsHQ
dataset [13] using a significantly smaller number of cam-
eras (40). We compare to SOTA pose-conditioned 3DGS
avatar methods, including Animatable Gaussians (AG)
[27], 3DGS-Avatar [50], and Gaussian Avatar (GA) [11]
which were trained on the same multiview data.

Please note that our method, along with 3DGS-Avatar
and GA, represents a lightweight class of MLP-based algo-
rithms, utilizing up to 10 million parameters. In contrast,
the CNN-based MVP, BD, and AG [27] which in this case
uses approximately 23 times more parameters (230 mil-
lion).

5.1. Image Quality Evaluation

Our model is evaluated using SSIM, PSNR, and the per-
ceptual metric LPIPS [75], with random color backgrounds.
For the ActorsHQ evaluation, we utilized SMPL-X fittings

obtained through OpenPose [3] and scan-to-mesh optimiza-
tion. Table 1 shows that our method achieves the best PSNR
and SSIM on our dataset compared to MVP [30] and BD
[1]. Furthermore, on the ActorsHQ dataset, D3GA outper-
forms other Gaussian Avatar methods in terms of PSNR
and SSIM. However, similar to previous evaluations, our
method lacks sharpness due to its much smaller size com-
pared to the CNN-based architecture of AG [27]. Moreover,
our approach allows us to decompose avatars into drivable
layers, unlike other volumetric methods. Each separate gar-
ment layer can be controlled solely by skeleton joint angles,
without requiring specific garment registration modules as
in [67].

Dataset Method PSNR ↑ LPIPS ↓ SSIM ↑

Ours
Ours 30.634 0.054 0.964
MVP [30] 28.795 0.051 0.955
BD [1] 29.918 0.044 0.959

ActorsHQ

Ours 26.562 0.065 0.944
GA [11] 24.731 0.088 0.933
3DGS-Avatar [50] 21.709 0.082 0.915
AG [28] 26.454 0.055 0.937

Table 1. Our method scores the best in terms of PSNR and SSIM
compared to BD [1] and MVP [30] on our dataset. D3GA is the
best among MLP-based avatars, ranking only second in terms of
sharpness compared to AG, which uses a CNN-based architecture.
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Figure 5. ActorsHQ [13] comprises challenging garments that contain high-frequency patterns. Our method despite its small size can
capture it and performs the best in terms of PSNR and SSIM, ranking second only in terms of sharpness to AG [27], which presents very
sharp results due to the powerful StyleUNet [62].

5.2. Ablation Studies

Importance of cage deformations We replaced tetrahe-
drons with triangles to emphasize the crucial role of cage
deformation gradients in transforming Gaussians. We mod-
ified Eq 5 such that 3D means are obtained through the
barycentric coordinates of triangles b ∈ R3 instead of tetra-
hedrons b ∈ R4. The rest of the pipeline remains un-
changed, with MLPs computing the same corrective terms
as our cage-based model. Since triangles do not provide
volume, we disabled the application of the cage deformation

gradient J, but the Gaussians are still modeled by the pre-
dicted residuals w.r.t. the canonical space. Figure 8 shows
that the triangle-based approach does not stretch the prim-
itives correctly, creating holes and artifacts which demon-
strates the importance of using cages for deformation.

Garment loss The garment loss LGarment (Fig. 7) serves
two primary purposes: it improves garment separation and
reduces erroneously translucid regions. We can observe
qualitatively that regions between garments’ boundaries
without the regularizer are blurry and have erroneous opac-



Figure 6. D3GA enables motion transfer showing good generaliz-
ability while preserving each avatar’s high-quality details.

Method #parameters (M) size (MiB)

Ours 9 45
GaussianAvatar [11] 7 59
3DGS-Avatar [50] 6 57
AG [28] 232 862

Table 2. Model compactness. D3GA offers the best tradeoff be-
tween quality and model size.

ity, see supp. mat. Single layer avatar D3GA supports a
single-layer training for the garment and body, which strug-
gles to model proper garment sliding. The results are pre-
sented in the last column of Fig. 7. It can be observed that
the edges between the T-shirt and jeans are over-smoothed.

Size and compactness Our model offers an optimal balance
between quality and model size, making it both compact
and easily portable. This lightweight representation sets
D3GA apart from much larger and more cumbersome mod-
els like AG [27]. As shown in Table 2, D3GA is similar in
size to other methods, yet it delivers superior quality com-
pared to models in the same category. This makes D3GA an
attractive choice for telepresence applications, where both
efficiency and performance are crucial.

6. Discussion
While D3GA shows better quality and competitive render-
ing speed w.r.t. the state of the art, there are still particular
challenges. High-frequency patterns, like stripes, may re-
sult in blurry regions. One way of improving image quality
would be using a variational autoencoder to regress Gaus-
sian parameters per texel of a guide mesh similar to [27, 30].

Ground Truth Ours w/o LGarment Single Layer

Figure 7. Ablation of D3GA: shape smoothness without
LGarment, and sliding artifacts with a single layer representation.
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Figure 8. Gaussian primitives embedded in triangles, compared to
tetrahedrons, produce more artifacts, resulting in small holes and
reduced sharpness that is reflected in the LIPIS score, which drops
from 0.0648 to 0.0703.

Despite using the LGarment loss, self-collisions for loose
garments are still challenging, and the sparse controlling
signal does not contain enough information about complex
wrinkles or self-shadowing. A potential solution to solve
self-penetration would be to incorporate explicit collision
detection [4] for the tetrahedrons. An exciting follow-up
work direction would be replacing the appearance model in
D3GA with a relightable one. D3GA is currently limited
to model photorealistic avatars for a few consenting sub-
jects captured in a dense multi-view capture device. While
this limits the potential misuse of the technology of driving
somebody else’s avatar without their consent, it needs to be
addressed in future work. In conclusion, it’s worth noting
that the D3GA offers significant flexibility and can be cus-
tomized for particular applications. For instance, one could
employ additional Gaussians to capture high-frequency de-
tail or opt to eliminate garment supervision, particularly if
precise cage geometry decomposition isn’t necessary.

7. Conclusion
We have proposed D3GA, a novel approach for reconstruct-
ing multi-layered animatable human avatars using tetrahe-
dral cages embedded with 3D Gaussians. To transform the
rendering primitives from canonical to deformed space, we
directly apply the deformation gradient to the 3D Gaussian
parametrization, enabling improved avatar modeling. Our
method’s compositional approach enables various forms
of localized conditioning, such as using keypoints for fa-
cial expressions, and can be extended to other regions like
hair, hands, or shoes. This capability is essential for cre-
ating holistic avatars driven by diverse input signals. We
have demonstrated high-quality results that surpass state-
of-the-art methods with similar model architectures, all
while maintaining a lightweight, real-time, and compact ap-
proach.
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Abstract

Current personalized neural head avatars face a trade-off: lightweight
models lack detail and realism, while high-quality, animatable avatars
require significant computational resources, making them unsuitable
for commodity devices. To address this gap, we introduce Gaussian
Eigen Models (GEM), which provide high-quality, lightweight, and
easily controllable head avatars. GEM utilizes 3D Gaussian primitives
for representing the appearance, combined with Gaussian splatting for
rendering. Building on the success of mesh-based 3D morphable face
models (3DMM), we define GEM as an ensemble of linear eigenbases
for representing the head appearance of a specific subject. In particular,
we construct linear bases to represent the position, scale, rotation, and
opacity of the 3D Gaussians. This allows us to efficiently generate
Gaussian primitives of a specific head shape by a linear combination of
the basis vectors, only requiring a low-dimensional parameter vector
that contains the respective coefficients. We propose to construct these
linear bases (GEM) by distilling high-quality, compute-intensive CNN-
based Gaussian avatar models that can generate expression-dependent
appearance changes like wrinkles. These high-quality models are
trained on multi-view videos of a subject and are distilled using a
series of principal component analyses. Once we have obtained the
bases that represent the animatable appearance space of a specific
human, we learn a regressor that takes a single RGB image as input
and predicts the low-dimensional parameter vector that corresponds
to the shown facial expression. In a series of experiments, we compare
GEM’s self-reenactment and cross-person reenactment results to state-
of-the-art 3D avatar methods, demonstrating GEM’s higher visual
quality and better generalization to new expressions.
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Figure 1. We propose a method that represents 3D Gaussian head avatars in a network-free form as ensembles of eigenbases (GEM). Only a
linear combination of these bases is needed to generate new primitives, which can be splatted using 3D Gaussian Splatting. We demonstrate
that the necessary coefficients for a specific expression can be regressed from single images, enabling real-time facial animation and cross-
reenactment. The simplicity of GEM results in highly efficient storage and rendering times.

Abstract

Current personalized neural head avatars face a trade-off:
lightweight models lack detail and realism, while high-
quality, animatable avatars require significant computa-
tional resources, making them unsuitable for commodity de-
vices. To address this gap, we introduce Gaussian Eigen
Models (GEM), which provide high-quality, lightweight,
and easily controllable head avatars. GEM utilizes 3D
Gaussian primitives for representing the appearance com-
bined with Gaussian splatting for rendering. Building
on the success of mesh-based 3D morphable face models
(3DMM), we define GEM as an ensemble of linear eigen-
bases for representing the head appearance of a specific
subject. In particular, we construct linear bases to rep-
resent the position, scale, rotation, and opacity of the 3D
Gaussians. This allows us to efficiently generate Gaussian
primitives of a specific head shape by a linear combina-
tion of the basis vectors, only requiring a low-dimensional
parameter vector that contains the respective coefficients.
We propose to construct these linear bases (GEM) by dis-
tilling high-quality compute-intense CNN-based Gaussian
avatar models that can generate expression-dependent ap-
pearance changes like wrinkles. These high-quality models
are trained on multi-view videos of a subject and are dis-

tilled using a series of principle component analyses.
Once we have obtained the bases that represent the an-

imatable appearance space of a specific human, we learn
a regressor that takes a single RGB image as input and
predicts the low-dimensional parameter vector that corre-
sponds to the shown facial expression. We demonstrate that
this regressor can be trained such that it effectively sup-
ports self- and cross-person reenactment from monocular
videos without requiring prior mesh-based tracking. In a
series of experiments, we compare GEM’s self-reenactment
and cross-person reenactment results to state-of-the-art 3D
avatar methods, demonstrating GEM’s higher visual qual-
ity and better generalization to new expressions. As our
distilled linear model is highly efficient in generating novel
animation states, we also show a real-time demo of GEMs
driven by monocular webcam videos. The code and model
will be released for research purposes.

1. Introduction

Half a century ago, Frederick Parke described a represen-
tation and animation technique to generate ,,animated se-
quences of a human face changing expressions” [40]. Us-
ing polygonal meshes, single facial expression states were
described that could be combined with linear interpolation
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to generate new expression states (the ,,simplest way con-
sistent with natural motion” [40]). Based on this prin-
ciple, Blanz, and Vetter [2] introduced the so-called 3D
morphable model (3DMM) - a statistical model of the 3D
shape and appearance of human faces. Principle Compo-
nent Analysis (PCA) is performed on a set of around 200
subjects that have been laser-scanned and registered to a
consistent template to find the displacement vectors (prin-
cipal components) of how faces change the most, in terms
of geometry and albedo. With this PCA basis, new faces can
be generated by specifying the coefficients for the principle
components taking a dot product of the coefficients with the
basis to obtain offsets, and adding them to the mean. State-
of-the-art reports on face reconstruction and tracking [68]
as well as on morphable models [6] state that this repre-
sentation is widely used for facial performance capturing
(regression-based and optimization-based) and builds the
backbone of recent controllable photo-realistic 3D avatars
that are equipped with neural rendering [10, 15, 48, 49, 62].

Inspired by the simplicity of such mesh-based linear
morphable models and addressing the lack of appearance
realism of current 3DMMs, we propose a personalized lin-
ear appearance model based on 3D Gaussians as geometry
primitives following 3D Gaussian Splatting (3DGS) [21].
In contrast to the work on Dynamic 3D Gaussian Avatars
[30, 38, 43, 45, 57, 60, 66], our goal is a compact and
light representation that does not need vast amounts of com-
pute resources to generate novel expressions of the human.
Unfortunately, most of the methods show that to produce
high-quality results, one needs to employ heavy CNN-based
architectures which are not well suited for commodity de-
vices and tend to slow down the rendering pipeline. More-
over, those models comprise dozens of millions of parame-
ters creating heavy checkpoints that can easily exceed 500
MB. This ultimately creates a major issue for distributing
and managing personalized models. We tackle this prob-
lem by distilling a CNN-based architecture, leading to a
personalized Gaussian Eigen Models for Human Heads,
GEM in short. Our approach builds on Gaussian maps
predicted from a modified UNet architecture [53] which is
used for the UV space normalization required to build linear
eigenbases. Based on the per-subject trained CNN model,
we bootstrap the GEM by computing an ensemble of lin-
ear bases on the predicted Gaussian maps of the training
frames. The bases are refined on the training corpus using
photometric losses while preserving their orthogonality.

These lightweight appearance bases are controlled with
a relatively low number of parameters ranging from twenty
up to fifty coefficients which can be specified w.r.t. the
available compute resources and can for example be re-
gressed by a ResNet-based model [8]. We demonstrate this
for self-reenactment as well as cross-person animation, in-
cluding a real-time demo in the suppl. video.

In summary, our main contributions are:
1. Gaussian Eigen Models for Human Heads (GEM), a dis-

tillation technique of 3D Gaussian head avatar models
built upon an ensemble of eigenbases.

2. real-time (cross-person) animation of GEMs from single
input images using a generalizable regressor.

2. Related Work
The majority of face representation and tracking techniques
are based on parametric 3D morphable models (3DMM) [2,
29]. For a detailed overview, we refer to the state-of-the-
art reports on face tracking and reconstruction [68], the re-
port on morphable models [6], and the two neural rendering
state-of-the-art reports [48, 49] that demonstrate how neu-
ral rendering can be leveraged for photo-realistic facial or
full body avatars. Next, we review the recent methods for
photo-realistic 3D avatars generation which build appear-
ance models using neural radiance fields (NeRF) [35] or
volumetric primitives like 3D Gaussians [21].

2.1. NeRF-based avatars

One of the first methods that combines a 3DMM and NeRF
is NeRFace [10], where a neural radiance field is directly
conditioned by expression codes of the Basel Face Model
(BFM) [2, 50]. This idea gave rise to many methods
[11, 15, 42, 56, 59, 62–64] following a similar approach, but
attaching the radiance fields more explicitly to the surface
of the 3DMM, e.g., by using the 3DMM-defined deforma-
tion field. For photorealistic results, some methods employ
StyleGAN2-like architectures [20] with a NeRF-based ren-
derer [1, 4, 19]. Generative methods like EG3D [4] and
PanoHead [1] employ GAN-based training to predict tri-
plane features that span a NeRF. GANAvatar [19] applies
this scheme to reconstruct a personalized avatar.

Close to our method is StyleAvatar [53]. Based on
3DMM tracking the method learns a personalized avatar
that benefits from a StyleUNet which incorporates Style-
GAN [20] to decode the final image. Despite real-time ca-
pabilities, StyleAvatar suffers from artifacts produced by
the image-to-image translation network that we explicitly
avoid by using Gaussian maps which can compensate for
tracking misalignments by predicting corrective fields for
the 3D Gaussians.

2.2. 3D Avatars from Volumetric Primitives

Using multiview images with a variational auto-encoder
[22] and volumetric integration, Neural Volumes (NV) [31]
encodes dynamic scenes into a volume which can be de-
formed by traversing a latent code z. To better control the
3D space, Lombardi et al. [32] introduce Mixture of Volu-
metric Primitives (MVP) a hybrid representation based on
primitives attached to a tracked mesh which ultimately re-
placed the encoder from NV. Each primitive is a volume
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Figure 2. Given a multi-view video of a subject and mesh tracking, we create a dataset of 3D Gaussian point clouds for each frame in the
sequence. Using this data, we distill a high-quality Gaussian Eigen Model (GEM). GEM is an ensemble of linear bases for each Gaussian
primitive modality: position, opacity, scale, and rotation. Based on these bases, facial appearances are generated by a linear combination.

represented as a small voxel with 323 cells that store RGB
and opacity values. The final color is obtained by inte-
grating values along a pixel ray. This hybrid representa-
tion inspired many follow-up projects [3, 28, 44, 47, 54].
As an alternative to MVP primitives, 3D Gaussian Splatting
(3DGS) [21] represents a volume as a set of anisotropic 3D
Gaussians, which are equivalently described as ellipsoids,
in contrast to isotropic spheres used in Pulsar [25].

Numerous methods [9, 13, 17, 24, 30, 38, 43, 45, 55, 57,
61, 66, 67] capitalize on the speed and quality of 3DGS.
Qian et al. [43] attach 3D Gaussians to the FLAME [29]
mesh surface and apply a deformation gradient similar to
Zielonka et al. [64] to orient the Gaussians according to the
local Frenet frames of the surface. This method, however,
does not utilize any information about expressions and,
thus, struggles with pose-dependent changes (e.g., wrin-
kles, self-shadows) and, despite high-quality results, re-
trieves only a global static appearance model. 3D Gaus-
sian blendshapes [34] controls an avatar by linearly inter-
polating between optimized blendshapes using 3DMM ex-
pression coefficents. However, this method depends on an
underlying 3DMM whereas GEM is a mesh-free represen-
tation. Li et al. [30] use a StyleUNet-like CNN architecture
[53] to regress front and back Gaussian maps. Employing
a powerful CNN network on position maps, they achieve
impressive results for human bodies with effects like pose-
dependent wrinkle formation.

Please note that in this work, we focus on methods that
directly output Gaussian primitives. This is an important
distinction from a branch of methods that follow Deferred
Neural Rendering [51], where a refinement CNN translates
splatted features or coarse colors into the final image; for
instance, Gaussian Head Avatars [57] and NGPA [13]. This
distinction is important because Gaussian primitives cannot
be fully distilled into an eigenbasis in this context, as the
refinement CNN network is required to complete the ren-
dering directly in the image space.

2.3. 3DGS Compression Methods

Recently, several methods [7, 14, 26, 27, 36, 39] have been
proposed to reduce the memory footprint of 3D Gaussian
Splatting (3DGS). Papantonakis et al. [39] apply codebook
quantization to the Gaussian primitive properties, alongside
pruning of Spherical Harmonic (SH) coefficients based on
their final contribution. In contrast to postprocessing ap-
proaches [7, 27, 39], Compact3D [36] employs a single-
stage process that jointly optimizes both the codebook en-
tries and the primitives. Fan et al. [7] calculate a signif-
icance score for each primitive by measuring its pixel hit
count, thereby improving the pruning strategy. Most of
these methods target static scenes or time-conditioned en-
vironments, unlike our approach, which focuses on effi-
cient, fully controllable head avatars. Nonetheless, these
compression techniques could be adapted to our animatable
avatars to reduce memory usage.

3. Method

Recent dynamic 3D Gaussian Avatar methods show un-
precedented quality, however, they require sophisticated
and often compute-heavy CNN-based architectures [30, 38,
57] to capture high-frequency and dynamic details like
pose-dependent wrinkles or self-shadows. The aim of this
paper is to build on top of this quality but remove the
compute-intense architecture during inference. Specifi-
cally, we propose to distill high-quality avatar models into
lightweight linear animation models which we call GEMs.
A GEM is defined by an ensemble of eigenbases that span
the space of the 3D Gaussian primitives. These eigenbases
are constructed via PCA applied on a dataset of per-frame
Gaussian primitives, see Section 3.1.

An important distinction compared to other neural
avatars [10, 15, 31, 53, 57, 64] is that GEM does not require
a 3DMM [29, 41] at test time. We demonstrate that a GEM
can be directly driven by a monocular video using a gener-
alized image-based regression network, see Section 3.2.
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3.1. Gaussian Eigen Model (GEM)

For our distillation, we reconstruct a sequence of nor-
malized Gaussian primitives DDD = {GGG0, ...,GGGN−1}. As
input, we assume a multi-view video of the subject
with N time frames. Per time frame i, we recon-
struct the 3D Gaussian pointcloud GGGi, where GGGi con-
tains the parameters that define the 3D Gaussians such as
rotation θ⃗, position ϕ⃗, opacity α⃗, scale σ⃗, and color c⃗ such
that GGGi = {θ⃗, ϕ⃗, α⃗, σ⃗, c⃗}.
Reconstructing High-quality 3D Gaussian Primitives:
We are following the idea of organizing the 3D Gaussians in
2D maps [30, 38, 45, 57], where each pixel represents a 3D
Gaussian with its parameters. We propose an adapted CNN-
architecture of Animatable Gaussians (AG) [30], by merg-
ing the separate Style-U-Nets, reducing the convolutional
layers, and operating in the UV space of the FLAME head
model. In addition, we are employing deformation gradi-
ents following Sumner et al. [46] to handle the transforma-
tion from canonical to deformed space and treat the color as
a global parameter. We refer to the suppl. mat. for a detailed
explanation of the architectural changes. In comparison to
the original AG model, our proposed CNN model produces
slightly better results while being more efficient in terms of
computing and memory. Using this model, we generate the
per-frame Gaussian primitivesGGGi in the canonical space for
all training time-frames. Note that for this reconstruction,
we follow Animatable Gaussians and, thus, FLAME-based
tracking is required. However, during inference, our model
is independent of FLAME.
Distillation: Given DDD = {GGG0, ...,GGGN−1}, we build
a personalized eigenbasis model, which is called GEM.
We compute a statistical model for each Gaussian modal-
ity separately. Specifically, we create individual bases for
rotation BBBθ, position BBBϕ, opacity BBBα, and scale BBBσ with
respective means µ⃗θ, µ⃗ϕ, µ⃗α and µ⃗σ via Principle Com-
plonent Analysis (PCA) [18]. Note that the color CCC is
optimized globally and, thus, acts as a classical texture
without the need to apply PCA. To accurately learn dy-
namically moving Gaussians, we fixed the color to pre-
vent it from dominating the image representation, other-
wise, Gaussians could change their semantic meaning (e.g.,
a Gaussian could represent the lip in one state, and the teeth
in the other deformation state). Keeping the semantic mean-
ing of specific Gaussians across deformation states is cru-
cial for applying a PCA afterward.

A face model instance GGG is represented as a linear com-
bination of these bases:

GGG = {µ⃗i +Biki | i ∈ {θ, ϕ, α, σ}, c⃗} , (1)

where kθ, kϕ, kθ and kσ ∈ RM are the linear coefficients
which are defining the facial expression state, assuming M
principal components. As an example, Figure 3 shows posi-

Figure 3. Samples of a GEM. We display samples for the first
three components of the position kϕ eigenbasis of a GEM, show-
ing diverse expressions. Note that GEM requires no parametric
3D face model like FLAME[29].

Figure 4. Image-based animation. One of the applications of our
GEM is real-time (cross)-reenactment. For that, we utilize gener-
alized features from EMOCA [5] and build a pipeline to regress
the PCA coefficients of our model from an input image/video.

tion parameter kϕ sampled in the range of [−3σϕ, 3σϕ] (σϕ

being the std. deviation).
As the Gaussian primitives D might contain track-

ing failures and misalignments, the principle components
BBB(θ,ϕ,α,σ) also contain artifacts as well. We, therefore, re-
fine the bases using the training images directly, by apply-
ing a photometric reconstruction loss. We employ the same
objectives from the CNN model training (see supp. mat).

LColor = (1− ω)L1 + ωLD-SSIM + ζLVGG (2)

We refine the base vectors for around 30k iterations. To
ensure that the individual bases stay orthonormal through-
out this refinement, every 1k steps, we orthogonalize the
bases using QR decomposition. This refinement improves
the training PSNR errors from 34.75dB to 36.68dB and
36.85dB for the training steps 0k, 5k, and 30k, respectively.
Throughout our experiments, we did not encounter overfit-
ting issues with this scheme. The reconstruction metrics
on two randomly selected test sequences with refinement
are: PSNR: 31.51, LPIPS: 0.091, SSIM: 0.936; and with-
out: PSNR: 31.38, LPIPS: 0.094, SSIM: 0.933.

3.2. Image-based Animation

Expressions for a GEM are fully defined by their coeffi-
cients kθ, kϕ, kθ and kσ . This is a similar idea to codec
avatars [33], however, our approach does not need addi-
tional pixel shaders in the form of a small regression MLP.
There are several ways to obtain the coefficients of a GEM,
for example, one can employ analysis-by-synthesis-based
optimization or regression. Analysis-by-synthesis [2] is the
backbone of current avatar methods, as they use photomet-
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Figure 5. Novel view synthesis. Both, our CNN and GEM show better performance on novel views, especially, in the region of the
mouth interior and wrinkles. In this experiment, we are following the evaluation of Gaussian Avatars [43] and demonstrate novel viewpoint
generation. GEM is obtained throughout analysis-by-synthesis fitting [2, 50]. Note that the expressions are seen during training.

ric or depth-based face trackers to sequentially optimize
the coefficients of the underlying 3DMMs like FLAME
[15, 50, 64] which is typically slow. As a fast, but more
imprecise alternative, regressors like DECA [8] or EMOCA
[5] can be used which are built on a ResNet backbone and
regress FLAME parameters directly from an image. We
apply several modifications to the EMOCA model, see 4.
We use intermediate features of the pre-trained EMOCA
network denoted as Θ(Ii) where Ii is the current image.
EMOCA’s architecture comprises two ResNet networks;
one to extract expression features fexpr ∈ R2048 and the
second for shape fshape ∈ R2048, both are followed by final
MLPs to regress corresponding FLAME parameters. As we
do not rely on FLAME, we remove the last hidden layer of
the final MLP obtaining two feature vectors which we com-
bine into one f ∈ R2×1024 vector. For these features, we
build a PCA layer with a basis denoted as R̂ using the train-
ing frames from five frontal cameras of NeRSemble. Note
that we use relative features r = f − fneutral in this PCA
layer. The neutral reference frame fneutral = Θ(Ineutral)
to compute these relative features is selected manually from
the video, similar to Face2Face [50]. During training, for
each frame, we project r onto the PCA manifold using the
first 50 principal components to restrict and regularize train-
ing. Finally, we use their corresponding PCA coefficients:

κ = (r− R̄)R̂T , (3)

where R̄ is the relative PCA model mean. The projected
coefficients are passed through a small MLP that produces
a vector of GEM coefficients k = {kθ,kϕ,kθ,kσ}:

k = 3 · σk · tanh(MLP(κ)). (4)

The MLP has three hidden layers with 256 neurons each
and ReLU activations. We use a scaled tanh activation
function for the output to restrict the prediction to be in
[−3 · σk, 3 · σk], σk being the respective standard devia-
tion of the coefficients k, obtained from the PCA. The final
primitives are obtained by Eq. 1 and splatted using 3DGS.

4. Results

We evaluate GEM on the NeRSemble [23], where tracked
meshes [43] and synchronized images from 16 cameras
with a resolution of 802× 550 are available. Our baselines
are Gaussian Avatars (GA) [43] which is neural network-
free (Gaussians are attached to the FLAME model), our im-
plementation of Animatable Gaussians (AG) [30] which is
based on CNN-predicting Gaussian maps, and INSTA [64]
which uses dynamic NeRF [35]. Note that all baselines re-
quire at least two stages: (i) construct the avatar, and (ii)
get the parameters to drive it. Most of them use offline
tracking with additional objectives like hair reconstruction
[12, 43], which does not work for real-time applications
despite the avatar model’s rendering being real-time. Im-
portantly, in our approach, we introduce a third step, i.e.,
the construction of the eigenbasis (GEM), which only intro-
duces negligible computational costs (∼ 1 min) in compar-
ison to the avatar reconstruction itself. For the comparison,
we present both of our appearance models, the StyleUNet-
based architecture (Ours Net) and the distilled linear Eigen
model (Ours GEM) which we evaluate using analysis-by-
synthesis fitting to the target images following [2, 50, 65].
Additionally, we present cross-reenactment results based
on our coefficient regressor, compared to the baselines that
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Ground Truth Ours GEM Ours Net GA [43] AG [30] INSTA [64]

Figure 6. Novel view and expression synthesis. Our Gaussian Eigen Models for Human Heads shows better results in regions like teeth,
wrinkles, and self-shadows compared to other methods that struggle with artifacts.

Method PSNR ↑ LPIPS ↓ SSIM ↑ L1 ↓
AG [30] 32.4166 0.0712 0.9614 0.0066
GA [43] 31.3197 0.0786 0.9567 0.0075
INSTA [64] 27.7786 0.1232 0.9294 0.0163
Ours Net 32.4622 0.0713 0.9617 0.0067
Ours GEM 33.5528 0.0678 0.9662 0.0061

Table 1. Novel viewpoint evaluation is conducted on a withhold
camera from the 16 cameras used for training. Note that the ex-
pression has been seen during training, and only the view is new.

use FLAME meshes regressed by DECA [8]. Relative ex-
pression transfer based on ground truth meshes [43] can
be found in the supp. mat. All of the methods are evalu-
ated using several image space metrics on novel expressions
and novel views, following the test and novel-view split of
Qian et al. [43]. For our GEM models, we use 50 compo-
nents distilled from 2562 textures which give around 60k
active Gaussians. Animatable Gaussians [30] uses a similar
amount of primitives for front and back textures and Gaus-
sian Avatars [43] around 100k Gaussians.

4.1. Image Quality Evaluation

To evaluate our method, we measure the color error in
the image space using the following metrics: PSNR (dB),
LPIPS [58], L1 loss, and structural similarity (SSIM). We
follow the evaluation scheme from Gaussian Avatars [43],
using their train and validation split. The evaluation of
GEM was generated by sequentially fitting the coefficients
to each image using photometric objectives. Note that the
baselines use the FLAME model with offsets for the track-

Method PSNR ↑ LPIPS ↓ SSIM ↑ L1 ↓
AG [30] 29.0114 0.0812 0.9429 0.0099
GA [43] 28.3137 0.0815 0.9433 0.0102
INSTA [64] 27.9181 0.1153 0.9340 0.0128
Ours Net 29.2454 0.0777 0.9448 0.0096
Ours GEM 32.6781 0.0675 0.9633 0.0069

Table 2. Evaluation on novel expressions and views show
improved results of GEM optimized using analysis-by-synthesis
compared to others. Figure 6 shows the corr. qualitative results.

ing, while GEM can directly be used for tracking.
Table 2 presents results on novel expressions evaluated

on all 16 cameras. Both the quantitative and qualitative re-
sults depicted in Figure 6 show that our PCA model pro-
duces fewer artifacts, especially for regions like teeth or
facial wrinkles. Table 1 contains an evaluation where we
measure errors on novel viewpoints. The results demon-
strate that our CNN-based appearance model outperforms
other neural methods, while our linear eigenbasis GEM
achieves the highest quality. This is due to the ’direct’
analysis-by-synthesis approach, which fully leverages the
expressiveness and detail of our photorealistic appearance
model, without the limitations imposed by 3DMMs such as
FLAME. Moreover, Figure 5 shows qualitative results of
our method on novel views. As can be seen, we better cap-
ture high-frequency details, pose-dependent wrinkles, and
self-shadows - something which is not possible for methods
like Gaussian Avatars [43] or INSTA [64], since they either
do not use expression-dependent neural networks or limit
the conditioning to a small region only.
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Source Actor Ours GEM Ours Net GA [43] AG [30] INSTA [64]

Figure 7. Facial cross-person reenactment using an image-based regressor. The reenactment of the baselines is performed using relative
transfer between FLAME meshes regressed by EMOCA compared to our GEM regressor network (Ours GEM).

4.2. Cross-person Reenactment Evaluation

Facial cross-person reenactment transfers expressions from
the source actor to the target actor. For this, the base-
line methods require tracked meshes obtained by fitting
the 3DMM model for each frame of the source actor se-
quence. As an alternative to optimization-based tracking,
a (monocular) regressor like EMOCA [5], can predict such
tracked meshes in real-time. We demonstrate this in Fig-
ure 7, where GEM is driven by our image-based regressor
and the others by EMOCA. As shown, our network-based
method and GEM produce sharp results, while the baseline
methods struggle to extrapolate to new expressions, display-
ing severe artifacts in appearance. Our approach effectively
regularizes the regressed coefficients, ensuring that the pre-
dicted avatar remains in the training distribution and thereby
avoids artifacts seen in INSTA or Gaussian Avatars. Draw-
ing inspiration from EMOCA [5], we further assess cross-
re-enactment quantitatively by leveraging emotion recogni-
tion feature vectors from both the source image and the re-
sulting cross-re-enactment, utilizing EmoNet [52]. For each

Method Efeatcos ↑ Efeat L1 ↓ FID ↓ FPS ↑
AG 0.9396 5.3399 0.4093 16.51
GA 0.8917 6.6141 0.5593 142.71
INSTA 0.9087 6.3153 0.5299 20.62
Ours Net 0.9440 5.1044 0.3685 35.77
Ours GEM 0.9381 5.3197 0.4286 201.70

Table 3. Cross-reenactment evaluation employing EmoNet fea-
tures and FID score.

pair of input and output images, we predict EmoNet features
and measure cosine distance and L1 error between them.
We report the numbers in the Table 3. Additionally, we also
report FID scores [16] and rendering speed. Our method
achieves on-par quality with the CNN-based solution while
maintaining the highest frame rates and outperforming GA
in terms of quality.

4.3. GEM Ablation Studies

We are interested in the compression error introduced by
the projection on different amounts of principal components
used in GEM, also concerning the memory consumption.
Our smallest model weighs as little as 7MB using only 10
components of the eigenbasis. This is almost 12 times less
than our smallest CNN-based model and almost 70 times
less than Animatable Gaussians [30]. In contrast to neu-
ral networks, we can easily trade quality over size which is
very useful in the context of different commodity devices
with reduced compute capabilities. Table 4 presents how
compression affects the quality of reconstruction, where we
evaluate a sequence with ∼ 1k frames for a single actor
under a novel view. As expected, using only 10 compo-
nents impacts the quality the most, however, the results are
still of high quality, see Figure 8. Gaussian Avatars [43]
offers a small size of the stored Gaussians cloud, ranging
from 5MB, and 14MB without the FLAME model for 1282,
2562 Gaussians, respectively. However, the quality of re-
construction lacks wrinkle details and sharpness as can be
seen in Figure 10. In comparison to Gaussian Avatars [43],
our model does not require FLAME during inference which
is an additional 90MB.
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Ground Truth #10 #30 #50
Figure 8. Compression error depending on the number of used principle components in GEM. The heatmaps show the photometric
ℓ1-error for 10, 30, and 50 components using 1282 Gaussian maps. See suppl. doc. for additional evaluations.

Figure 9. Despite fixed topology and predefined texture size GEM
faithfully represents facial attributes like glasses.

Ground Truth Ours #30 1282 GA [43] 1282 GA [43] 2562
Figure 10. The quality comparison to Gaussian Avatars. Note that
we do not need an additional FLAME model which weighs 90MB.

#Comp 1282 2562 5122

PSNR ↑ Size MB FPS ↑ PSNR ↑ Size MB FPS ↑ PSNR ↑ Size MB FPS ↑
10 31.81 7 237.96 31.88 28 210.03 32.23 113 130.46
30 34.20 20 241.31 34.17 83 208.19 34.84 333 112.73
50 34.67 34 238.7 34.61 138 201.70 35.45 553 117.45

Ours Net 33.97 82 47.70 34.99 109 35.77 35.02 178 26.31
AG [30] 33.77 487 18.93 34.40 529 16.51 35.15 636 13.08

Table 4. Ablation of GEM. Even with 10 principle components
a high PSNR of 31.81dB is achieved, while taking only 7MB of
memory. In contrast to fixed-sized neural networks, the GEM can
be adjusted on the fly depending on the hardware. Moreover, since
evaluation requires a single dot product for forward pass the ren-
dering speed is around four times higher than our network. The
speed evaluation was done using a single Nvidia A100 GPU.

Figure 9 demonstrates that our method is able to handle
different topologies (subject wearing glasses), despite uti-
lizing a fixed UV space.

5. Discussion
We design a universal method capable of distilling 3DGS-
based avatar solutions into a lightweight representation,
GEM, provided that normalized input across training
frames is available. The only requirement to successfully
distill GEM is to have a dataset with Gaussian-image pairs
across the training sequences. Our results show that a com-
pact representation of the linear basis produces state-of-
the-art results in terms of quality and speed. Note that

to achieve wrinkle-level details, the generator itself has to
produce high-quality outputs. Our distillation technique
can be applied to existing methods like [67], making them
lightweight and compact. GEM is well-suited for commod-
ity devices, generating Gaussian primitives by a simple lin-
ear combination of the basis vectors. This potential has
promising implications for tasks like holoportation, audio-
driven avatars, and virtual reality.
Limitations: The PCA-based GEM models have a global
extent which is useful for some applications, but it also
means that we cannot control local changes and produce
more combinations of local features. Thus, further work
could include incorporating a localized PCA basis [37] for
better avatar control, which could potentially enable a wider
range of expressions outside the training set. Other lim-
itations are; side-view generalization which results in un-
stable expressions and personalization. For new subjects a
new representation has to be learned from multi-view data.
An interesting future avenue is to create a statistical model
across subjects.

6. Conclusion
We have proposed Gaussian Eigen Models for Human
Heads, a linear appearance model that represents photo-
realistic head avatars. The simplicity of this appearance
model results in massively reduced compute requirements
in comparison to CNN-based avatar methods. Although the
idea is simple, it offers many interesting downstream appli-
cations. The lightweight representation could improve the
management, sharing, and applicability of avatars. More-
over, GEM simplifies the process of online avatar animation
from RGB images and increases flexibility by balancing
memory and quality trade-offs through additional control
over the number of eigenbases. Our distillation approach
can be applied to existing methods, making them available
for compression. We demonstrate how GEMs can be used
in scenarios like self-reenactment and cross-person anima-
tion, even in real-time.
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Abstract

We present SynShot, a novel method for the few-shot inversion of
a drivable head avatar based on a synthetic prior. We tackle three
major challenges. First, training a controllable 3D generative network
requires a large number of diverse sequences, for which pairs of
images and high-quality tracked meshes are not always available.
Second, the use of real data is strictly regulated (e.g., under the General
Data Protection Regulation, which mandates frequent deletion of
models and data to accommodate a situation when a participant’s
consent is withdrawn). Synthetic data, free from these constraints,
is an appealing alternative. Third, state-of-the-art monocular avatar
models struggle to generalize to new views and expressions, lacking a
strong prior and often overfitting to a specific viewpoint distribution.
Inspired by machine learning models trained solely on synthetic data,
we propose a method that learns a prior model from a large dataset of
synthetic heads with diverse identities, expressions, and viewpoints.
With few input images, SynShot fine-tunes the pretrained synthetic
prior to bridge the domain gap, modeling a photorealistic head avatar
that generalizes to novel expressions and viewpoints. We model the
head avatar using 3D Gaussian splatting and a convolutional encoder-
decoder that outputs Gaussian parameters in UV texture space. To
account for the different modeling complexities over parts of the
head (e.g., skin vs hair), we embed the prior with explicit control for
upsampling the number of per-part primitives. Compared to SOTA
monocular and GAN-based methods, SynShot significantly improves
novel view and expression synthesis.
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Figure 1. Given a few input images (left), SynShot generates a personalized 3D Gaussian avatar that renders from new viewpoints and
unseen expressions (right). To compensate for the missing information in the input images, we leverage a generative Gaussian head avatar
trained on a diverse synthetic head dataset as a 3D prior.

Abstract

We present SynShot, a novel method for the few-shot
inversion of a drivable head avatar based on a synthetic
prior. We tackle three major challenges. First, training a
controllable 3D generative network requires a large num-
ber of diverse sequences, for which pairs of images and
high-quality tracked meshes are not always available. Sec-
ond, the use of real data is strictly regulated (e.g., under
the General Data Protection Regulation, which mandates
frequent deletion of models and data to accommodate a
situation when participant’s consent is withdrawn). Syn-
thetic data, free from these constraints, is an appealing al-
ternative. Third, state-of-the-art monocular avatar models
struggle to generalize to new views and expressions, lacking
a strong prior and often overfitting to a specific viewpoint
distribution. Inspired by machine learning models trained
solely on synthetic data, we propose a method that learns a
prior model from a large dataset of synthetic heads with di-
verse identities, expressions, and viewpoints. With few input
images, SynShot fine-tunes the pretrained synthetic prior
to bridge the domain gap, modeling a photorealistic head

∗Work done while WZ was interning at Google in Zurich, Switzerland

avatar that generalizes to novel expressions and viewpoints.
We model the head avatar using 3D Gaussian splatting and
a convolutional encoder-decoder that outputs Gaussian pa-
rameters in UV texture space. To account for the different
modeling complexities over parts of the head (e.g., skin vs
hair), we embed the prior with explicit control for upsam-
pling the number of per-part primitives. Compared to SOTA
monocular and GAN-based methods, SynShot significantly
improves novel view and expression synthesis.

1. Introduction

The ability to build high-fidelity drivable digital avatars is a
key enabler for virtual reality (VR) and mixed reality (MR)
applications. However, creating photorealistic human head
models [1, 53] using traditional rendering assets requires
sophisticated data capture and significant manual cleanup,
which is time-consuming and expensive.

The recent advancements in learning-based methods and
radiance fields [29, 43] have simplified the avatar creation
process, leading to impressive progress in quality and de-
mocratization of neural head avatars [19, 42, 62]. Such
progress is particularly noticeable in enhancing control

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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through lightweight animation [48, 65, 82], and reducing
training time to a few minutes [79]. These methods are
trained on multi-view [42, 48, 62] or single-view videos
[9, 19, 65, 79], typically requiring hundreds to thousands
of video frames. Processing such datasets is complex and
error-prone as most methods require tracking a coarse head
mesh across all frames, which is typically done by fitting
a 3D morphable model [38, 45] to the image. A further
limitation of existing personalized head avatars is their poor
generalization to facial expressions and camera viewpoints
not captured in the set of input images.

Another recent body of work addresses the problem of
building 3D head avatars from one or few input images,
[8, 11, 71]. However, their rendering quality and fidelity
are typically lower than those of methods trained on large
datasets (e.g., [48, 82]). To improve quality, some methods
[69, 70, 75] first learn a multi-identity head model that is
used as prior when optimizing for the personalized avatar.
Training these head priors requires a large-scale multi-view
image dataset that is expensive and time-consuming to cap-
ture. Moreover, managing real data under protection laws
like GDPR is cumbersome for experimentation and mainte-
nance, as users must periodically (e.g., every 30 days) delete
all dataset derivatives and trained models, allowing dataset
participants to be removed from both if needed. Alterna-
tively, the FFHQ dataset [28] may be employed, with 4D
GAN-based methods [13, 56, 74] constructing an inversion
prior from it. However, these approaches tend to exhibit
artifacts during novel view synthesis and struggle with pre-
serving identity. In summary, the expressive power of this
prior is strongly influenced by: the training data diversity
(e.g., ethnicity, age, facial features, expressions), the multi-
view capture hardware setup (i.e., lighting, view-density,
calibration quality, frame-rate), and the quality of the data
pre-processing (e.g., mesh tracking, background masking).

In contrast to the previous work that focuses on expen-
sive and cumbersome real data, we overcome these limi-
tations and propose SynShot, a new method that builds a
prior solely on synthetic data and adapts to a real test sub-
ject requiring only a few input images. Building on the
success of ML models trained on synthetic data for tasks
like 3D face regression [52], 2D landmark prediction [64],
rigid face alignment [3], and few-shot head reconstruction
[6, 63, 72], SynShot is trained solely on a large synthetic
dataset generated from 3DMM samples and diverse assets.
Synthetic data offers complete control over dataset creation
to meet size and diversity needs for training an expressive
head prior, eliminating the need for costly capture hard-
ware and addressing privacy concerns with real subjects.
The benefits brought by synthetic data come at the cost of
having to handle the domain gap between the trained head
prior and real images captured “in the wild”. To effectively
bridge this gap, we first fit the synthetic prior to real images

and then fine-tune the prior weights to the real data using
the pivotal tuning strategy proposed in [49]. With as few
as three input images, SynShot reconstructs a photorealistic
head avatar that generalizes to novel expressions and cam-
era viewpoints (Fig. 1). The results show that our method
outperforms state-of-the-art personalized monocular meth-
ods [54, 65, 79] trained on thousands of images each. Our
method represents head avatars using 3D Gaussian primi-
tives [29], where Gaussian parameters are generated by a
convolutional architecture in UV space [39, 50, 82].

In summary, our key contributions are:
1. A generative method based on a convolutional encoder-

decoder architecture that is trained on extensive syn-
thetic data only to produce controllable 3D head avatars.

2. A reconstruction scheme that adapts and fine-tunes a pre-
trained generative model on a few real images to create
a personalized, photorealistic 3D head avatar.

2. Related Work

Few-shot Head Avatars. 3D Morphable Models (3DMM)
[4, 15, 38, 45] have long been used for creating facial
avatars. When paired with generative models for textures
[22, 35, 36, 41], 3DMMs can be optimized from in-the-
wild images. Techniques such as inverse rendering [14],
diffusion-based inpainting [44], and pivotal-tuning [37, 49]
are used to disentangle appearance from identity. Neural
radiance fields (NeRF) [43] and 3D Gaussian representa-
tions (3DGS) [29] have also been widely used for avatar re-
construction. EG3D [7] employs features on tri-planes, en-
abling consistent 3D face generation and inversion from in-
the-wild images. PanoHead [2] extends EG3D through tri-
grids to achieve a full 360-degree generation of static human
heads. Gaussian3Diff [34] further improves quality by re-
placing neural features with 3D Gaussians. Rodin [63] and
RodinHD [72] leverage an extensive dataset of synthetic hu-
mans to train a triplane-based avatar generator used to invert
in-the-wild images; however, the results remain confined to
the synthetic domain and avatars are not drivable.

Diner [46] incorporates depth information, while Preface
[5] trains a volumetric prior on synthetic human data and fits
it to a few input images to match a subject’s likeness. Cafca
[6] extends Preface to better generalize to static but arbitrary
facial expressions. In contrast, our method not only bridges
the domain gap from synthetic to real but also produces an-
imatable avatars. MofaNeRF [78] and NeRFace [19] condi-
tion NeRFs on expression (and shape) codes, while Head-
NeRF [25] similarly embeds NeRFs into parametric mod-
els. Portrait4D [13] introduces one-shot 4D head synthesis
using a transformer-based animatable triplane reconstructor
built on the EG3D [7]. Next3D [56] employs GAN-based
neural textures embedded on a parametric mesh; however, it
suffers from inversion problems. InvertAvatar [74] tackles
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Figure 2. Pipeline overview. Given an extracted texture xxxtex, rasterized position map xxxverts, and PCA expression deltas xxxexp

our network utilized VQ-VAE to jointly optimize for two latent space zzzexpr and zzzid. The VQ-VAE decoders predict feature map
DDDfeat(q(zzzid),q(zzzexpr)) → x̂xxfeat, identity and color maps DDDid(q(zzzid)) → {x̂xxtex, x̂xxverts}, and expression deltas DDDexpr(q(zzzexpr)) →
x̂xxexpr. Finally, bilinearly sampled maps are passed to per-part regressors RRRcolor and RRRgauss to obtain primitives to rasterize.

the shortcomings of Next3D and further refines avatar inver-
sion using few-shot images. Despite relatively good frontal
performance, these GAN-based methods often exhibit arti-
facts, such as identity changes, in novel view synthesis.

Recent methods by Xu et al. [70] are conceptually simi-
lar to HeadNeRF and MofaNeRF; however, instead of em-
bedding NeRF [43] on a mesh, they employ 3DGS [29].
GPHM [70] uses a series of MLPs to generate Gaussian
primitives attached to a parametric model, enabling ex-
pression control and inversion, though it conditions only
the avatar’s shape. GPHMv2 [69] extends GPHM with a
dynamic module for improved reenactment control and a
larger dataset, further enhancing quality. HeadGAP [75]
also models avatars using MLPs, utilizing part-based fea-
tures and additional color conditioning to improve quality.
While these methods embed primitives directly on the mesh
surface, our approach explicitly learns the primitive param-
eters by modeling their distribution via a VQ-VAE [61],
eliminating the need for a guiding mesh during the test time
as the shape is captured within our latent space.

Multi-view Personalized Avatars. Volumetric primitives,
combined with multi-view training, are highly effective for
modeling human heads [23, 27, 31, 50, 57, 58, 68, 82] as
they capture intricate details like hair and subsurface scat-
tering [51].VolTeMorph [21] embeds a NeRF within tetra-
hedral cages that guide volumetric deformation. Qian et al.
[48] attach Gaussian primitives to 3DMM triangles, whose
local rotations and stretch deform the Gaussians without re-
quiring neural networks. Xu et al. [68] and Giebenhain
et al. [23] extend that work to further predict corrective
fields over the Gaussians; rather than colors, they splat fea-
tures that are translated into color by an image-space CNN
[60]. Lombardi et al. [40] position 3D voxels with RGB

and opacity values at the vertices of a head mesh, using
ray tracing for volumetric integration. Saito et al. [50] im-
prove quality by replacing voxel primitives with 3D Gaus-
sians and applying rasterization. Our VQ-GAN training
aligns with these principles for few-shot capture, as we su-
pervise the process using a hybrid mesh-primitive approach
to model the generative distribution.
Monocular Personalized Avatars. Monocular methods
often rely on a strong 3DMM prior, as recovering a 3D
shape from a 2D image is an inherently under-constrained
problem. Face2Face [59] was a seminal work that en-
abled real-time reconstruction and animation of a para-
metric model. However, it lacks detailed hair represen-
tation and relies on low-frequency PCA texture models,
which significantly affects quality. This limitation has
led to the rise of neural avatars based on NeRF [10, 18–
20, 62, 66, 67, 71, 76, 76, 77] and later on 3D Gaussian
primitives [9, 32, 54, 65]. INSTA [79] applies triangle de-
formation gradients [55] to each NeRF sample based on
proximity to the nearest triangle, enabling avatar anima-
tion. This approach has been adapted to 3D Gaussian Splat-
ting (3DGS) by methods like Flash Avatar [65] or Splat-
ting Avatar [54]. Unlike SynShot, these monocular meth-
ods do not generalize well to novel views and expressions.
Moreover, they require three orders of magnitude more real
data to create a single avatar. SynShot overcomes this by
leveraging a synthetic prior during few shot avatar inver-
sion, achieving high-quality results.

3. Method
This section describes SynShot, how we train the synthetic
prior to generate drivable 3D Gaussian head avatars, and
how we use it for few-shot head avatar reconstruction.
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3.1. Preliminaries

We represent a base 3D mesh as S = S̄+ δBid + γBexpr,
where S̄ is the average shape, B(id,expr) are the bases
for identity and expression of a 3DMM, and δ, γ denote
the corresponding coefficients. Additionally, we use linear
blend skinning (LBS) for head rotation around the neck with
pose corrective offsets, and to rotate the eyeballs.

The head avatar is rendered via 3D Gaussian splatting,
using the CUDA implementation of 3DGS [29]. The raster-
izer is defined as R(GGG,K) → Ī, for a camera K and a set
of n 3D Gaussians GGG ∈ Rn×(11+16×3) := {ϕϕϕ,θθθ,σσσ,ααα,hhh},
with position ϕϕϕ ∈ Rn×3, rotation θθθ ∈ Rn×3×3, scale
σσσ ∈ Rn×3, opacity ααα ∈ Rn, and the (third-degree) spher-
ical harmonics parameters hhh ∈ Rn×16×3, where n is the
number of Gaussians. See Kerbl et al. [29] for more details.

3.2. Gaussian Prior Model

Our prior is modeled as a generative convolutional network
with additional lightweight regressors that output Gaussian
2D maps, i.e. multichannel parameter textures. To sample
a flexible number of Gaussian primitives, UV positions and
features are bilinearly interpolated from intermediary fea-
ture maps, before decoding the standard Gaussian attributes
that are rendered using R(·). The architecture of the prior
learned by SynShot is illustrated in Fig. 2.
Drivable VQ-VAE. Our network has an encoder-decoder
architecture based on the VQ-VAE [61]. We follow the ap-
proach of Esser et al. [16], and use a transformer operat-
ing in a quantized latent codebook space to better model
long-range dependencies between encoded patches in im-
ages. The input to the encoder consists of an RGB tex-
ture map xxxtex ∈ RH×W×3, an XYZ vertex position map
xxxverts = Ruv(δBid) ∈ RH×W×3 representing the raster-
ized positions of the neutral mesh, and an expression map
xxxexp = Ruv(γBexpr) ∈ RH×W×3 denoting rasterized ex-
pression offsets from the neutral mesh, where Ruv(·) de-
notes UV space rasterization. The encoder network con-
sists of two parallel branches, one for identity and one for
expression. This way we explicitly disentangle static com-
ponents, such as face shape and appearance, from dynamic
ones, such as wrinkles, and self-shadowing using two sepa-
rate latent spaces. We denote them as EEEid(xxxtex,xxxverts) →
zzzid, where zzzid ∈ Rh×w×nid is the identity code and
EEEexpr(xxxexp) → zzzexpr with zzzexpr ∈ Rh×w×nexpr represent-
ing the expression code. The identity and expression latents
undergo element-wise quantization q(·). For simplicity, we
omit the subscript and let zzz ∈ {zzzid, zzzexpr} denote identity
and expression latent codes, with spatial codes zij ∈ Rn,
which we quantize by:

q(zzz) :=

(
argmin
zk∈Z

∥zij − zk∥
)
, (1)

with a learned discrete codebook Z = {zk}Kk=1, with

zk ∈ Rn. The quantized latent codes are fed into the de-
coder, which is implemented as three output branches: a
feature map decoder, DDDfeat(q(zzzid),q(zzzexpr)) → x̂xxfeat ∈
RH×W×F with F -dimensional feature vectors per texel; an
identity map decoder, DDDid(q(zzzid)) → {x̂xxtex, x̂xxverts}; and
an expression decoder, DDDexpr(q(zzzexpr)) → x̂xxexpr. Given
the output vertex position and expression maps, x̂xxverts and
x̂xxexpr, the positions of the Gaussian primitives are then com-
puted as ϕϕϕ = x̂xxverts + x̂xxexpr.
Gaussian Primitives Regression. A common limitation
of using CNNs to regress Gaussian maps is the fixed out-
put resolution, which ties the number of primitives to the
output dimensions. This restriction can significantly limit
the quality of the reconstructed avatar (see Table 1). To
address this issue, we use a part-based densification mech-
anism. Similar to Kirschstein et al. [32], we use bilin-
ear sampling, B(·, u, v) to sample the output of the de-
coders at UV-positions (u, v). As different head regions
r ∈ {face, hair} have varying requirements for the den-
sity of Gaussian primitives, we bilinearly sample separate
parameter maps for the face and scalp region, rather than
a single joint map. Thus, per-part map sampling acts as
adaptive primitive densification for the individual regions
to improve visual quality (Table 1).

We define the primitive positions in the 3DMM space us-
ing only shape and expression. Global rotation, translation,
and linear blend skinning (LBS) are factored out and ap-
plied to the primitives just before splatting to place them in
the correct world space. We compute initial per-part Gaus-
sian parameters for our primitives. Note that we do not use
a fixed canonical space [23, 32, 82], as our initialization is
derived from predicted position maps. We first obtain posi-
tions by samplingϕϕϕr = B(ϕϕϕ, ur, vr), for r ∈ {face, hair}.
Next, for each ϕϕϕr, we compute nearest neighbor distance
and initialize scale as σσσr = minj ̸=i ∥ϕϕϕri − ϕϕϕrj∥2. Initial
opacity is set to ααα = 0.7. Finally, the per-part rotations
are computed as θθθr =

[
T

∥T∥
B

∥B∥
N

∥N∥

]
∈ Rh×w×3×3,

based on the image space gradient:

T =
∂ϕϕϕr

∂u
, B =

∂ϕϕϕr

∂v
, N = T×B. (2)

Following common practice [23, 32, 50, 68, 75, 81, 82], we
predict a neural corrective field for all Gaussian parameters.
For this, we use the regressed feature map x̂xxfeat, sampling
sssr = B(x̂xxfeat, ur, vr), and lightweight regressors composed
of four stacked convolutional blocks with skip connections.
Per region, we define two regressors:

RRRcolor(sssr) → hhhr ∈ Rh×w×16×3, (3)
RRRgauss(sssr) → {δϕϕϕr, δθθθr, δσσσr, δαααr}, (4)

where RRRcolor regresses the spherical harmonics coeffi-
cients hhhr, and RRRgauss regresses additive parameter offsets
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∆ := {δϕϕϕr, δθθθr, δσσσr, δαααr} from the per-part Gaussian pa-
rameters. Finally, we apply ∆ to the primitives of the indi-
vidual parts, concatenate them, and splat as R(GGG,K) → Ī,
where Ī is the final rendered image and GGG represents the
combined Gaussian primitives.
Training Objectives. We supervise the training of our
model by minimizing the photometric loss:

Lcolor = αLL1 + βLSSIM + γLLPIPS (5)

between the pairs of input and output maps {xxxtex, x̂xxtex},
{xxxverts, x̂xxverts}, and {xxxexp, x̂xxexpr}, and between the pairs
of target images and the final splatted images {I, Ī}.

Additionally, the position maps x̂xxverts and expression
maps x̂xxexpr are supervised by Lgeom = δLL1. The final
loss is defined as L = Lcolor + Lgeom. Moreover, we ap-
ply L2 regularization on position, scale, opacity, and the FC
(l >= 1) part of the spherical harmonics coefficients: The
final loss is defined as L = Lphoto + Lreg . We train our
network end-to-end using 8 GPUs Nvidia H100 with batch
size 16 (2 per GPU). We optimize the network for 500K it-
erations with the Adam optimizer [30] with lr=1.3e−5 and
multi-step scheduler which decays the learning rate every
milestone by gamma=0.66.

3.3. Few-shot Avatar Reconstruction

To bridge the gap between in-the-wild and synthetic avatars,
we carefully designed a two-stage inversion process based
on pivotal fine-tuning [49]. First, we optimize the encoder
EEEid while keeping the rest of the network fixed such that
we recover zzzid. Note that EEEexpr remains unchanged as it
should model independent expressions. Once EEEid is fine-
tuned, we fix its predicted identity latent code zzzid, we fine-
tune the decoders {DDDfeat,DDDid,DDDexpr} and the regressors
{RRRcolor,RRRgauss} for the hair and face regions (Fig. 3).

To make the problem tractable, we employ a few heuris-
tics to aid the optimization. These include early stopping
with a warmup phase and an exponential moving average on
the loss to determine the stopping criteria. Additionally, we
scale the number of optimization steps based on the num-
ber of training frames, using a constant factor of 10 to in-
crease the likelihood that each sample is seen at least once.
As a training objective, in addition to our photometric term
Lcolor (Eq. 5), we follow Lattas et al. [37] and, based on Ar-
cFace [12], define two additional objectives: Lid and Larc.
The final inversion loss is equal to L = Lcolor+Larc+Lid.
For a number of views, up to 20, the optimization takes less
than 10 minutes on a single Nvidia H100 which is compa-
rable to INSTA [79]. The training time increases with the
number of frames as we scale the iterations accordingly.

3.4. Synthetic Dataset

Our dataset consists of approximately 2,000 unique iden-
tities, which we render with resolution 768 × 512 using

Source Prior Final Source Prior Final
Figure 3. Result of the pivotal tuning before (Prior) and after fine-
tuning the model decoders and regressors (Final).

Blender (Cycles) following Wood et al. [64], see Fig. 4. We
positioned fourteen cameras in front of the subject and an
additional fourteen cameras sampled from the upper hemi-
sphere, centered on the scene. We randomly assign assets
such as hairstyles and beards to these avatars. Addition-
ally, we utilize high-quality face textures which are ran-
domly distributed among the samples. By combining dif-
ferent shapes and appearances, we augment the set of iden-
tities, following practices in synthetic data [64] and 3D face
reconstruction [14, 37, 44]. To incorporate tracked expres-
sions from multi-view setups, we propagate them to the
avatars during sequence rendering. We additionally com-
pute a hair proxy from strands by voxelizing and fitting it
to the scalp region; we apply the same approach for beards.
Using a neutral mesh and its hair proxy, we backproject the
images onto the texture map. During test time, we use a
3DMM regressor and the input images to extract a texture,
which is then used as an initialization for our method. In
total, our dataset comprises 14 million images.

Figure 4. Random samples of our synthetic dataset show a diverse
range of identities, expressions, and hairstyles that would be chal-
lenging to capture in an in-house studio with real subjects.

4. Results
We compare SynShot to two different types of meth-
ods, state-of-the-art personalized monocular methods, and
inversion-based general methods. The personalized monoc-
ular methods are controlled by FLAME [38] meshes and
include INSTA [79], Flash Avatar [65], and SplattingAvatar
[54]. For monocular methods, we used an ensemble of four
datasets [19, 24, 76, 82] processed using the face tracker
from Zielonka et al. [80]. SplattingAvatar follows the ap-
proach of Zheng et al. [76] and uses the monocular 3D face
regressor DECA [17] for tracking. In our experiments, we
adopted a similar approach, employing an in-house regres-
sor, similar to DECA, to estimate 3DMM expression and
pose parameters. While these methods produce photorealis-
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Source Ours INSTA [79] SA [54] FA [65]

Figure 5. Cross-reenactment comparison of SynShot inversion using only 3 views to state-of-the-art (SOTA) methods: INSTA [79], Flash
Avatar (FA) [65], and Splatting Avatar (SA) [54], each of which was trained on an average of 3000 frames. It is evident that without a
strong prior, these methods fail to generalize to novel expressions and views. Inversion input images are in the supplemental materials.

Figure 6. Novel view evaluation of long hair and beard inversion
using only three input images demonstrates the strong generaliza-
tion capability of SynShot.

tic avatars, they struggle with generalization to novel views
and poses (see Figure 5). For inversion-based methods, we
compare PanoHead [2], HeadNeRF [25], and MofaNeRF
[78]. We also compare to concurrent works including Por-
trait4D [13], Next3D [56], and InvertAvatar [74] (Figures 8
and 9). We use three images for all inversion experiments
see supp. material. Figure 6 presents a novel view evalu-
ation of challenging long hair and beard inversion, demon-
strating the generalization capabilities of SynShot.
Evaluation. To measure the performance of SynShot with-
out introducing bias, we selected training frames from
{Fn}16n=1 = {1, . . . , 987}, where Fn denotes the Fibonacci
sequence. For all experiments, we use progressive farthest
point sampling [47] in the 3DMM expression space to select
a specified number of frames from the training set. The self-
reenactment sequences were evaluated using LPIPS and
SSIM on the last 600 frames from the INSTA dataset [79].
Monocular Avatar Self-Reenactment. Our combined

Figure 7. We evaluated the reconstruction error with respect to
the number of frames using LPIPS and SSIM metrics. For each
frame count, we report the average error (left) and standard devi-
ation (right) over 600 frames across 11 subjects, highlighting the
importance of our synthetic prior.

dataset consists of eleven monocular sequences (512× 512
resolution), many of which are in-the-wild videos with very
limited head motion, resulting in a low error as the test se-
quences closely resemble the training data, leaving limited
room to assess diversity. To address this and accurately
measure the effective error, we trained each method on a
varying number of frames, corresponding to frames used in
our inversion pipeline. The reconstruction error is evaluated
on 600 test frames. Figure 7 demonstrates the effective-
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Ground Truth Ours InvertAvatar [74] Portrait4D [13] Next3D [56]

Figure 8. The GAN-based self-reenactment comparison again shows that SynShot better captures identity and synthesizes novel views,
proving its usefulness as a synthetic prior and for pivotal fine-tuning in inversion. LPIPS scores: Ours (0.0236), InvertAvatar (0.0962),
Portrait4D (0.0843), and Next3D (0.2274). Inversion input images can be found in supplemental materials.

Source Ours InvertAvatar [74] Portrait4D [13] Next3D [56]

Figure 9. The GAN-based cross-reenactment comparison shows that our method better reconstructs the target subject’s appearance (iden-
tity) and remains faithful to the source subject’s head poses and expressions, whereas the other methods suffer from artifacts.

ness of our inversion, particularly with up to 233 training
frames. Due to the lack of a strong prior, monocular meth-
ods fail in low training frame regimes, and, even with larger
training datasets, they do not perform well and produce ar-
tifacts. Please note that to benefit from an increased num-
ber of input frames, i.e., to ground the avatar reconstruction
more on the input than the synthetic prior, it requires an
increased number of optimization iterations during pivotal
fine-tuning. The number of iteration steps affects the met-
rics, causing LPIPS to vary non-monotonically.

Monocular Avatar Cross-Reenactment. We would like to
emphasize the importance of evaluating cross-reenactment,
which often reveals issues with generalization and overfit-
ting; however, these aspects are frequently underempha-
sized, as evaluation sequences are commonly not suffi-
ciently challenging. For instance, Figure 7 indicates that
13 frames may be sufficient for monocular methods to per-
form well on the test set. Despite achieving high-quality
results, most monocular methods [19, 24, 54, 65, 79] strug-
gle with cross-reenactment involving novel expressions and
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views. In the supp. mat. we present a full evaluation. With-
out a strong prior, these methods frequently exhibit artifacts
when driven by out-of-distribution sequences. In contrast,
our method, leveraging only three images and a synthetic
prior with effective shape-expression disentanglement, is
able to invert an avatar that significantly outperforms state-
of-the-art models trained on thousands of frames. Figure 5
demonstrates cross-reenactment, with the leftmost column
serving as the source for expression and view. This shows
that incorporating a strong prior enhances the visual quality.

Architecture L1 ↓ LPIPS ↓ SSIM ↑ PSNR ↑
F = 128 0.0356 0.2686 0.8189 20.1536
Tex. up-sampling 0.0352 0.2695 0.8196 20.1909
Single Layer 0.0369 0.2702 0.8177 19.8871
F = 32 0.0375 0.2732 0.8146 19.7002
w/o VQ 0.0396 0.2747 0.8122 19.2861
F = 64 0.0400 0.2765 0.8104 19.2731
No Sampling 0.0403 0.2853 0.8158 19.9787
256× 256 0.0365 0.2865 0.8194 20.4010

Table 1. We evaluated various configurations of our VQ-VAE.
Each configuration uses the final textures of 512 × 512, unless
stated otherwise. As our final model (F = 128) we selected the
one which produces sharpest results in terms of LPIPS.

GAN-based baselines. We compared SynShot to three ani-
matable GAN-based methods. For our method and InvertA-
vatar [74], we used three input images, whereas Portrait4D
[13] and Next3D [56] are single-shot. Figure 8 presents
qualitative self-reenactment results, with additional quanti-
tative LPIPS scores: Ours (0.0236), InvertAvatar (0.0962),
Portrait4D (0.0843), and Next3D (0.2274). Both results
show that SynShot significantly outperforms the baselines.
Moreover, Figure 9 presents expression transfer, where our
method best captures the subject’s identity and is more sta-
ble for novel views and expressions, whereas GAN-based
methods tend to introduce artifacts in side views.
VQ-VAE Architecture Ablation. Table 1 presents an ab-
lation study of our VQ-VAE architecture. Each model was
evaluated on 50 test actors excluded from the training set.
Our best model, in terms of sharpness and quality, regresses
a feature map x̂xxfeat ∈ RH×W×F , where F = 128, at a reso-
lution of 512×512. Regressing Gaussian primitives directly
(No Sampling) suffers from lack of quality. Using a Single
Layer instead of two (for hair + face) results in a lower num-
ber of Gaussians, which also decreases the final quality. A
key feature of our network is densification through texture
sampling. In the (Tex. up-sampling) experiment, we predict
feature maps at 256×256 resolution compared to 512×512
and apply bilinear sampling to upscale the per-region sam-
pled feature maps to 512 × 512. This approach achieves
results that are almost on par while saving VQ-VAE com-
putation and memory.Finally, using codebook quantization

of latent space improves the final image quality (w/o VQ).

Loss L1 ↓ LPIPS ↓ SSIM ↑ PSNR ↑
Lphoto + LV GG + LId + LArcFeat 0.0229 0.0776 0.9073 23.7474
Lphoto + LV GG 0.0244 0.0839 0.9058 23.1191
Lphoto + LV GG + LId 0.0246 0.0848 0.9048 23.1949
Lphoto = LL1 + LSSIM 0.0217 0.0904 0.9094 23.7331

Table 2. Ablation for our inversion losses.

Inversion Ablation. Our inversion pipeline consists of sev-
eral losses that help bridge the gap between synthetic and
real images. This is an important step in our pipeline, as
real subjects often have appearance and illumination con-
ditions that differ significantly from our distribution. To
address this, we rely on pixel-wise losses and, most impor-
tantly, on perceptual losses, which have been shown to aid
in effectively matching two distributions [5, 6, 26, 37, 73].
Table 2 shows the inversion reconstruction error using dif-
ferent combinations of losses. As can be seen, using only
Lphoto is insufficient. The combination of LV GG, based on
AlexNet [33], LID, and LArcFeat provides the best results.

5. Discussion
While significantly outperforming monocular methods,
SynShot has certain limitations that we identify. A key chal-
lenge is bridging the domain gap between synthetic and
real data. There is considerable room for improvement in
the generation of synthetic data. For example, all our syn-
thetic subjects share the same teeth geometry and texture.
As a consequence, teeth in our inverted head avatars often
closely follow the prior and do not adapt easily. Further-
more, our synthetic data lacks diverse expression-dependent
wrinkles, affecting its overall visual quality. Additionally,
our dataset was ray-traced with a single environment map,
limiting generalization to varied lighting conditions.

6. Conclusion
We have proposed SynShot, a method for reconstructing a
personalized 3D Gaussian head avatar from just a few im-
ages. SynShot builds a generative head avatar purely from
synthetic data and then utilizes this model as a prior in an
inversion pipeline. This inversion pipeline follows a pivotal
tuning strategy that successfully bridges the domain gap be-
tween the prior and the real input images. We demonstrate
that our personalized head avatars generalize better to un-
seen expressions and viewpoints than SOTA head avatars.
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[59] J. Thies, M. Zollhöfer, M. Stamminger, C. Theobalt, and M.
Nießner. Face2Face: Real-time face capture and reenactment
of RGB videos. In Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2016. 3

[60] Justus Thies, Michael Zollhöfer, and Matthias Nießner. De-
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116 appendix

a.6 broader impact : ethical concerns

While our research advances the synthesis and capture of realistic 3D
avatars, it also raises important ethical considerations. Technologies
capable of generating lifelike human representations can be misused
for malicious purposes, including misinformation, identity theft, ha-
rassment, and other forms of digital deception. Although our work is
intended for positive applications such as remote communication and
telepresence, we acknowledge the inherent difficulty in preventing
misuse.

To mitigate potential harm, we advocate for open and transparent
research practices. Sharing our methods and datasets can support
the development of safeguards such as digital media forensics and
forgery detection systems. At the same time, we recognize that the
rapid progress in generative models, particularly diffusion-based ap-
proaches, presents significant challenges for digital forensics. As these
models continue to improve in generating highly realistic multimodal
outputs, including synchronized video and audio, detecting synthetic
or manipulated content becomes increasingly difficult.

This remains an urgent and unresolved issue. Current detection tools
often struggle to keep pace with generative techniques, and the prob-
lem is likely to grow as the quality of generated media improves. We
emphasize the need for continued research in both content genera-
tion and detection, and we highlight the importance of responsible
data usage, ethical oversight, and collaboration across disciplines to
ensure that these technologies serve the public good while minimizing
potential harm.
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