Capturing and Synthesis of 3D Digital Humans

Prof. Simone Schaub-Meyer

Potential Applications of Digital Avatars

Research & Simulation [1]

Entertainment & Media [4]

4) Runways ACT 2

Why is it a Hard Problem?

Photorealism comes at the cost of sophisticated and powerful networks. [2]

- 1) A 3D Face Model for Pose and Illumination Invariant Face Recognition, Paysan et al.
- 2) Relightable Gaussian Codec Avatars, Saito et al.
- 3) Codec Avatar Studio, Martinez et al.

Creating photorealistic 3D digital avatars requires assets that take up hundreds of gigabytes and take weeks to process. [3]

The avatar must be photorealistic.

Any lack of photorealism immediat

immersion and makes the avatars look artificial. [1]

Introduction

☑ Speed of the avatar's creation.

☑ Few-shot inversion by utilizing synthetic prior.

Distillation to lightweight representation.

- ☑ Speed of the avatar's creation.
 - Many methods need days (even up to 5 days) to train a single avatar.
 - Appearance changes were not address due to compute heavy training.
 - They often lack real-time capabilities.

☑ Few-shot inversion by utilizing synthetic prior.

Distillation to lightweight representation.

- ☑ Speed of the avatar's creation.
 - Many methods need days (even up to 5 days) to train a single avatar.
 - Appearance changes were not address due to compute heavy training.
 - They often lack real-time capabilities.

- ☑ Few-shot inversion by utilizing synthetic prior.
 - Monocular avatars don't generalize well to new views or expressions.
 - 3D models need diverse paired data, which is scarce.
 - GDPR limits dataset use and retention.

Distillation to lightweight representation.

- ☑ Speed of the avatar's creation.
 - Many methods need days (even up to 5 days) to train a single avatar.
 - Appearance changes were not address due to compute heavy training.
 - They often lack real-time capabilities.

- ☑ Few-shot inversion by utilizing synthetic prior.
 - Monocular avatars don't generalize well to new views or expressions.
 - 3D models need diverse paired data, which is scarce.
 - GDPR limits dataset use and retention.

- Distillation to lightweight representation.
 - Lightweight models look unrealistic.
 - High-quality avatars are too resource-heavy for common devices.

Introduction 10

FLAME*

FLAME is a common 3DMM model used as a prior in most of 3D face avatar methods

$$\mathbf{S} = \mathbf{ar{S}} + \delta \mathbf{B}_{\mathrm{id}} + \gamma \mathbf{B}_{\mathrm{expr}}$$
 $\mathbf{C} = \mathbf{ar{C}} + \sigma \mathbf{D}_{\mathrm{id}}$

NeRF*

3DGS*

Primitives as ellipsis

Splatted Gaussians

Anisotropic Volumetric 3D Gaussians

3D Gaussian Splatting by Kerbl et al.

Surface Splatting by Zwicker et al.

Presentation Outline

INSTA - Instant Volumetric Head Avatars [Zielonka, Bolkart, Thies]
CVPR'23

SynShot - Synthetic Prior for Few-Shot Drivable Avatar Inversion [Zielonka, Garbin, Lattas, Kopanas, Gotardo, Beeler, Thies, Bolkart]

CVPR'25

GEM - Gaussian Eigen Models for Human Heads [Zielonka, Bolkart, Beeler, Thies]
CVPR'25

Motivation: Avatar from a monocular video

Motivation: Optimization Time

~ **2 days** 1 GPUs NHA [Grassal *et al*.]

~ **3-4 days** 1 GPU NeRFace [Gafni *et al*.]

~ **4-5 days** 1 GPU IMAvatar [Zheng *et al.*]

Ground truth

Solution: NeRF embedded on the surface of a mesh

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding by Muller et al.

Solution: Order of magnitude time improvement

~ **2 days** 1 GPUs NHA [Grassal *et al*.]

~ **3-4 days** 1 GPU NeRFace [Gafni *et al.*]

~ **4-5 days** 1 GPU IMAvatar [Zheng *et al.*]

~ 10 minutes 1 GPU Ours

Ground truth

Method: Input (monocular video + tracked mesh)

RGB video

Landmarks

Statistical texture

Geometry

Tracked mesh M

 $oldsymbol{E}$ – expressions

 $oldsymbol{P}$ – camera poses

 \triangle – nearest triangle to **p**

Tracked mesh M

 $oldsymbol{E}$ – expressions

 $oldsymbol{P}$ – camera poses

 \triangle – nearest triangle to **p**

Tracked mesh M

 $oldsymbol{E}$ – expressions

 $oldsymbol{P}$ – camera poses

 $\overline{\triangle}$ – nearest triangle to **p**

Tracked mesh M E – expressions

 $oldsymbol{P}$ – camera poses

 $\overline{\triangle}$ – nearest triangle to **p**

Tracked mesh M

 \boldsymbol{E} – expressions

 $oldsymbol{P}$ – camera poses

 \triangle – nearest triangle to **p**

Tracked mesh M

 \boldsymbol{E} – expressions

 $oldsymbol{P}$ – camera poses

 \triangle – nearest triangle to **p**

▼ Instant Volumetric Avatars Actor = OBAMA Loaded = 1700 Total = 2313 Latent = 16 Exp = 16 Canonical = 8090 Steps = 14870/20008 Raycast FLAME Render ground truth ▼ Render deformed Occ Grid Isosurface SPEED UP 1 - + Current Mesh Record video Start Stop Reset Camera Horizontal ▼ Mode ▼ All Save depth Resume training 25 - + # fps

Short Real-time Demo

Results: Qualitative Comparison

Results: Quantitative Comparison

Method	L2↓	PSNR ↑	SSIM ↑	LPIPS ↓
NHA [Grassal et al.]	0.0018	28.65	0.96	0.03
IMAvatar [Zheng et al.]	0.0014	29.10	0.95	0.06
NeRFace [Gafni et al.]	0.0010	30.87	0.96	0.05
Ours	0.0010	30.51	0.96	0.03

Results: Retargeting

INSTA works well for mostly small deformations but lacks a prior to properly generalize to other identities.

Source Targets

Limitations

Failure cases: **(a)** and **(b)** exhibits outline artifacts at the chin and hair which stem from geometry misalignment of the tracker, **(c)** extreme expressions can cause artifacts in the mouth region, and **(d)** extrapolation of expressions can lead to artifacts.

Take-home Messages of INSTA

- 1. Given a monocular RGB video as input, we optimize a controllable avatar in less than 10 minutes.
- 2. In this way, we can create a new avatar almost on the fly that reflects the current appearance instead of a prerecorded one.

Presentation Outline

INSTA - Instant Volumetric Head Avatars [Zielonka, Bolkart, Thies]
CVPR'23

SynShot - Synthetic Prior for Few-Shot Drivable Avatar Inversion [Zielonka, Garbin, Lattas, Kopanas, Gotardo, Beeler, Thies, Bolkart]

CVPR'25

GEM - Gaussian Eigen Models for Human Heads [Zielonka, Bolkart, Beeler, Thies]
CVPR'25

Motivation: Few-shot avatar inversion

Motivation: Monocular Methods

INSTA¹

Splatting Avatar²

Flash Avatar³

- 1) Zielonka et al. Instant Volumetric Head Avatars
- 2) Xiang et al. FlashAvatar: High-fidelity Head Avatar with Efficient Gaussian Embedding
- 3) Zhijing et al. SplattingAvatar: Realistic Real-Time Human Avatars with Mesh-Embedded Gaussian Splatting

Motivation: GAN-based Methods

¹⁾ Zhao et al. InvertAvatar: Incremental GAN Inversion for Generalized Head Avatars

²⁾ Deng et al. Portrait4D: Learning One-Shot 4D Head Avatar Synthesis using Synthetic Data

³⁾ Sun et al. Next3D: Generative Neural Texture Rasterization for 3D-Aware Head Avatars

Solution: Train Prior Model

Use multi-view dataset with tracked meshes to build a prior model used for inversion and driving the avatars.

Solution: Real Datasets?

Nersemble¹ Multiface² FaceScape³

¹⁾ Kirschstein et al. NeRSemble: Multi-View Radiance Field Reconstruction of Human Heads

²⁾ Wuu et al. Multiface: A Dataset for Neural Face Rendering

³⁾ Zhu et al. FaceScape: 3D Facial Dataset and Benchmark for Single-View 3D Face Reconstruction

Solution: Real Datasets?

The **General Data Protection Regulation (GDPR)** is an EU law that protects individuals' personal data and privacy, enforced since May 25, 2018.

What does it mean for **Digital Humans research**:

- 1. Dataset derivatives must be frequently deleted e.g., each 30 days.
- 2. Trained models the same, periodically removed.

Nersemble¹ Multiface² FaceScape³

¹⁾ Kirschstein et al. NeRSemble: Multi-View Radiance Field Reconstruction of Human Heads

²⁾ Wuu et al. Multiface: A Dataset for Neural Face Rendering

³⁾ Zhu et al. FaceScape: 3D Facial Dataset and Benchmark for Single-View 3D Face Reconstruction

Solution: Synthetic Datasets

Method: Pipeline

Method: Encoder

Method: Decoder

Method: Latent Space

Method: Avatar Inversion

Few-shot Input

Inverted Avatar

Input

Inversion – Stage 1

Inversion – Stage 2

Stage Inversion Stage 1 Stage 2

Results: Personalized Baselines

Source

Ours

INSTA¹

Splatting Avatar²

Flash Avatar²

¹⁾ Zielonka et al. Instant Volumetric Head Avatars

²⁾ Xiang et al. FlashAvatar: High-fidelity Head Avatar with Efficient Gaussian Embedding

³⁾ Zhijing et al. SplattingAvatar: Realistic Real-Time Human Avatars with Mesh-Embedded Gaussian Splatting

Results: GAN-based Baselines

Source

Ours

InvertAvatar¹

Portrait4D²

Next3D³

¹⁾ Zhao et al. InvertAvatar: Incremental GAN Inversion for Generalized Head Avatars

²⁾ Deng et al. Portrait4D: Learning One-Shot 4D Head Avatar Synthesis using Synthetic Data

³⁾ Sun et al. Next3D: Generative Neural Texture Rasterization for 3D-Aware Head Avatars

Results: Three-shot Inversions

Results: Three-shot Inversions

Limitations

Missing hair

No glasses in the dataset

Wrong illumination

Take-home Messages of SynShot

- 1. SynShot builds a multi-view prior using only synthetic data.
- 2. Enables cross-reenactment and outperforms monocular personalized methods like **INSTA**.
- 3. Pivotal fine-tuning bridges the real-synthetic gap, enabling drivable 4D avatars from synthetic-only priors.

Presentation Outline

INSTA - Instant Volumetric Head Avatars [Zielonka, Bolkart, Thies]
CVPR'23

SynShot - Synthetic Prior for Few-Shot Drivable Avatar Inversion [Zielonka, Garbin, Lattas, Kopanas, Gotardo, Beeler, Thies, Bolkart]

CVPR'25

GEM - Gaussian Eigen Models for Human Heads [Zielonka, Bolkart, Beeler, Thies]
CVPR'25

Motivation: High-Quality Avatars on VR-Glasses

Motivation: There is no Free Lunch

1) Qian et al., Photorealistic Head Avatars with Rigged 3D Gaussians, CVPR 2024

Motivation: There is no Free Lunch

1) Qian et al., Photorealistic Head Avatars with Rigged 3D Gaussians, CVPR 2024

Motivation: There is no Free Lunch

1) Qian et al., Photorealistic Head Avatars with Rigged 3D Gaussians, CVPR 2024

Method: Two Stage Approach

Stage 1

Stage 2

Method: Stage One (Generator)

Method: Stage One (Sequence of Gaussians)

Animatable Gaussians [Li et al.]

Method: Stage One (Sequence of Gaussians)

Method: Stage Two (Distillation)

Method: Stage Tw

Distilling

aces

Method: Stage Tw Ensamble of eigen basis

GEOMETRY COMP 00 = -2.6

OPACITY COMP 00 = -2.6

ROTATION COMP 00 = -2.6

SCALES COMP 01 = -2.6

Scale

Position

Opacity

Rotation

aces

Results: Novel Expressions

AG – Animatable Gaussians [Li et al.] GA – Gaussian Avatars [Qian et al.] INSTA – [Zielonka et al.]

Needs a 3DMM like FLAME

Ground Truth

Ours GEM

Ours Net 🐠

AG 🔥

GA 🐠

INSTA 🐠

Results: Image-base Cross-reenactment

Results – Cross-reenactment

FRAME 03669 | FPS=29.60

Driving Signal

FRAME 00279 | FPS=30.15

Driving Signal

Limitations: PCA's Global Extend

Source GEM

Take-home Messages of GEM

- 1. GEM distills heavy CNN-based avatars into efficient linear Eigenbases without needing 3DMM.
- 2. Quality and memory are adjustable via the number of bases.
- 3. Enables real-time image-based cross-reenactment with a pretrained ResNet.

All Projects During my PhD

SynShot - Synthetic Prior for Few-Shot Drivable Head Avatar Inversion [CVPR25]

MICA - Towards Metrical Reconstruction of Human Faces [ECCV22]

GEM - Gaussian Eigen Models for Human Heads [CVPR25]

Additional Slides

(3DGS + FLAME)*

assign a 3D Gaussian at the center of each triangle

Results: Qualitative Comparison (Novel View)

Results: Ablation Studies

Results: Quantitative Comparison

Results: Ablation Study (Architecture)

Architecture	L1↓	LPIPS ↓	SSIM ↑	PSNR ↑
F = 128	0.0356	0.2686	0.8189	20.1536
Tex. up-sampling	0.0352	0.2695	0.8196	20.1909
Single Layer	0.0369	0.2702	0.8177	19.8871
F = 32	0.0375	0.2732	0.8146	19.7002
w/o VQ	0.0396	0.2747	0.8122	19.2861
F = 64	0.0400	0.2765	0.8104	19.2731
No Sampling	0.0403	0.2853	0.8158	19.9787
256×256	0.0365	0.2865	0.8194	20.4010

Results: Novel Expressions

Method	PSNR ↑	LPIPS ↓	SSIM ↑	L1 ↓
AG	29.0114	0.0812	0.9429	0.0099
GA	28.3137	0.0815	0.9433	0.0102
INSTA	27.9181	0.1153	0.9340	0.0128
Ours Net	29.2454	0.0777	0.9448	0.0096
Ours GEM	32.6781	0.0675	0.9633	0.0069

AG – Animatable Gaussians [Li et al.] GA – Gaussian Avatars [Qian et al.] INSTA – [Zielonka et al.]

Results: Novel Viewpoint

Method	PSNR ↑	LPIPS ↓	SSIM↑	L1 ↓
AG	32.4166	0.0712	0.9614	0.0066
GA	31.3197	0.0786	0.9567	0.0075
INSTA	27.7786	0.1232	0.9294	0.0163
Ours Net	32.4622	0.0713	0.9617	0.0067
Ours GEM	33.5528	0.0678	0.9662	0.0061

AG – Animatable Gaussians [Li et al.] GA – Gaussian Avatars [Qian et al.] INSTA – [Zielonka et al.]

GEM: Localized PCA

GEOMETRY/eyeballs COMP 00 = -3.0

GEM: Localized PCA

Source GEM Localized GEM