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Method (Stage 1)
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Results — Novel Expressions and Views

Ground Truth Ours® GEM Ours Net /¥ AG A cA INSTA Y

i = ﬁ AG - Animatable Gaussians [Li et al.] .
— L;J "l GA - Gaussian Avatars [Qian et al.] 6 Needs a SDMM llke FLAME 9

INSTA-[Zielonka et al.]

GEM - Gaussian Eigen Models for Human Heads



Image-base Cross-reenactment

Regressor

Coefficients

I Position
“[ MLP ]_b H Rotation
i Scale

Opacity

-4

GEM9 Avatar

fshape

LY T Y5
e o U BRS

GEM - Gaussian Eigen Models for Human Heads

10







FRAME 03669 | FPS=29.60

Driving Signal
. — -

i@ =[ete
e =| 8.

T HaTl N | B~ ’

30 Gaussians Sequence GEM @ New 30 Faces
EM odels for Human Heads




FRAME 00279 | FPS=30.15

Driving Signal




Source

3 e
| £t
e
] E‘:L“ 4
1o ’
L ome New 30 Faces

GEM - Gaussian Eigen Models for Human Heads

Localized PCA

GEM

Localized GEM

14



Summary

TECHNISCHE
UNIVERSITAT
DARMSTADT

Live Demo

MAX PLANCK INSTITUTE

FOR INTELLIGENT SYSTEMS

Driving Signal
-

Driving Signal
-
=

=

Driving Signal

[=] % []

GEM Avatars }

GEM: Gaussian Eigen Models for Human Heads

Wojciech Zielonka, Timo Bolkart, Thabo Beeler, Justus Thies

Challenges

Neural head avatars trade off detail for efficiency: lightweight models lack realism, while high-
quality ones are too resource-intensive for commodity devices like VR glasses.

Solution -

To address this gap, we introduce Gaussian Eigen Models, a compact, single-layer representation
distilled from high-quality CNNs, enabling fast face synthesis via simple dot products.
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Dataset of regressed Gaussians primitives.
Based on our Gaussian regressor (Stage 1), we synthesize a dataset that is distilled into GEM (Stage 2).
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As an application of GEM, we show that the coefficients can be regressed from a single
image, enabling real-time facial animation and cross-reenactment.

17:00 - 19:00 Poster Session 4 & Exhibit Hall (Hall D)
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Ground Truth Ours GEM Ours Net AG? GAY INSTA*
Both our CNN and GEM perform better on novel views, especially around the mouth and wrinkles.
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Compression error depending on the number of used principal components in GEM.

Ty — - One of the applications of our
&) e GEM is real-time (cross)-
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Motivation

Source INSTA* Splatting Avatar> Flash Avatar®

!{"'3 . 4)Zielonka et al. Instant Volumetric Head Avatars
' » O N 5) Xiang et al. FlashAvatar: High-fidelity Head Avatar with Efficient Gaussian Embedding
6)
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Zhijing et al. SplattingAvatar: Realistic Real-Time Human Avatars with Mesh-Embedded Gaussian Splatting
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Motivation

Source InvertAvata Portrait4D®°
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" \"".’ 7) Zhao et al. InvertAvatar: Incremental GAN Inversion for Generalized Head Avatars
h'J J PIY . 8) Deng et al. Portrait4D: Learning One-Shot 4D Head Avatar Synthesis using Synthetic Data
—— e e 9)

Sun et al. Next3D: Generative Neural Texture Rasterization for 3D-Aware Head Avatars
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Motivation (Solution)
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Limited Diversity

Nersembile! Multiface?

!',3 1) Kirschstein et al. NeRSemble: Multi-View Radiance Field Reconstruction of Human Heads
' " 2) Wuu et al. Multiface: A Dataset for Neural Face Rendering
Fewshot Input | v nd Expressiors |

T 3)Zhu et al. FaceScape: 3D Facial Dataset and Benchmark for Single-View 3D Face Reconstruction
SynShot - Synthetic Prior for Few-Shot

Drivable Head Avatar Inversion
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Motivation

The General Data Protection Regulation (GDPR)
| IsanEU law that protects individuals' personal
) data and privacy, enforced since May 25, 2018.

What does it mean for Digital Humans research:
1. Dataset derivatives must be frequently deleted
e.g., each 30 days.

2. Trained models the same, periodically removed.

Nersembile! Multiface?

FaceScape’

" 1) Kirschstein et al. NeRSemble: Multi-View Radiance Field Reconstruction of Human Heads
' “ . 4 2) Wuu et al. Multiface: A Dataset for Neural Face Rendering
(Foworing ) NV e e, )

3)Zhu et al. FaceScape: 3D Facial Dataset and Benchmark for Single-View 3D Face Reconstruction 23
SynShot - Synthetic Prior for Few-Shot
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SynShot - Synthetic Prior for Few-Shot
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Inversion — Stage 2
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Results — Personalized-baselines
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Source Ours INSTA* Splatting Flash Avatar®

Avatar>
!*',3 ,. 4) Zielonka et al. Instant Volumetric Head Avatars
' ' 2. b 5) Xiang et al. FlashAvatar: High-fidelity Head Avatar with Efficient Gaussian Embedding
6) Zhijing et al. SplattingAvatar: Realistic Real-Time Human Avatars with Mesh-Embedded Gaussian Splatting 30
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Results — GAN-baselines

Source Ours InvertAvata Portrait4D®° Next3D?
r7

" i ” 7) Zhao et al. InvertAvatar: Incremental GAN Inversion for Generalized Head Avatars
', g} . 8) Deng et al. Portrait4D: Learning One-Shot 4D Head Avatar Synthesis using Synthetic Data
(Fewsbotio ) [ NowiViews sxdEpremions ]
Synshot - Synthetic Prior for Few-Shot 9) Sun et al. Next3D: Generative Neural Texture Rasterization for 3D-Aware Head Avatars 31
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Monocular baselines

1. Controllable 3D generative models need diverse image-mesh pairs, which are scarce. ' . ' . ' . ' - ' -
Il.  Real data use is limited by privacy laws (e.g., GDPR).
Il Monocular avatar models lack strong priors and often overfit, limiting generalization. 2qu Zqene Driving Ours INSTA* Splatting Avatar® Flash Avatar®
Solution * * Synthetic prior significantly boosts cross-reenactment over monocular methods.
To address those challenges, we propose a method that leams a prior from a large synthetic
dataset of diverse heads. Given a few input images, it fine-tunes this prior to generate a g '
istic avatar that izes to new ions and views. . . . A A
" Our latent space for exp ions and identity is rep by a smooth ’ ' 3
? 2
o Prior Fine-tuned Prior Fine-tuned Q '
" Prior

Challenges

The prior network uses a VQ-VAE generative framework to predict feature maps, which are
later bilinearly sampled and used as conditioning inputs for per-part (face, hair) regressors of
Gaussian primitives.
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